Publications by authors named "William Keyes"

Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes.

View Article and Find Full Text PDF

Reproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive mutants.

View Article and Find Full Text PDF

Cellular senescence is a distinct state that is frequently induced in response to ageing and stress. Yet studies have also uncovered beneficial functions in development, repair and regeneration. Current opinion therefore suggests that timely and controlled induction of senescence can be beneficial, while misregulation of the senescence program, either through mis-timed activation, or chronic accumulation of senescent cells, contributes to many disease states and the ageing process.

View Article and Find Full Text PDF

Valproic acid (VPA) is a widely prescribed drug to treat epilepsy, bipolar disorder, and migraine. If taken during pregnancy, however, exposure to the developing embryo can cause birth defects, cognitive impairment, and autism spectrum disorder. How VPA causes these developmental defects remains unknown.

View Article and Find Full Text PDF

Senescence is a specialized form of cell cycle arrest induced in response to damage and stress. In certain settings, senescent cells can promote their own removal by recruitment of the immune system, a process that is thought to decline in efficiency with age. In this issue of , Yin et al.

View Article and Find Full Text PDF

Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative understanding of gene regulation dynamics throughout the cell cycle is far from complete. Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell systems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related genes.

View Article and Find Full Text PDF

We recently linked branched-chain amino acid transferase 1 (BCAT1) dysfunction with the movement disorder Parkinson's disease (PD), and found that RNAi-mediated knockdown of neuronal bcat-1 in C. elegans causes abnormal spasm-like 'curling' behavior with age. Here we report the development of a machine learning-based workflow and its application to the discovery of potentially new therapeutics for PD.

View Article and Find Full Text PDF

Metabolic dysfunction occurs in many age-related neurodegenerative diseases, yet its role in disease etiology remains poorly understood. We recently discovered a potential causal link between the branched-chain amino acid transferase and the neurodegenerative movement disorder Parkinson's disease (PD). RNAi-mediated knockdown of is known to recapitulate PD-like features, including progressive motor deficits and neurodegeneration with age, yet the underlying mechanisms have remained unknown.

View Article and Find Full Text PDF

Evolutionarily conserved signaling pathways are crucial for adjusting growth, reproduction, and cell maintenance in response to altered environmental conditions or energy balance. However, we have an incomplete understanding of the signaling networks and mechanistic changes that coordinate physiological changes across tissues. We found that loss of the cAMP response element-binding protein (CREB) transcription factor significantly slows Caenorhabditis elegans' reproductive decline, an early hallmark of aging in many animals.

View Article and Find Full Text PDF
Article Synopsis
  • Young mammals can regenerate certain tissues, but this ability decreases as they mature, possibly due to cellular senescence.
  • In a study of liver regeneration after partial hepatectomy, specific senescence-associated genes (p21, p16, p19) were found to be expressed differently in various cell types as regeneration capacity diminished.
  • Treatment with a drug that inhibits senescence improved liver regeneration by reducing prolonged p21 expression, indicating that targeting cellular senescence may help enhance organ regeneration in young mammals.
View Article and Find Full Text PDF

Cellular senescence is a state comprising an essentially irreversible proliferative arrest combined with phenotypic changes and pronounced secretory activity. Although senescence has long been linked with aging, recent studies have uncovered functional roles for senescence in embryonic development, regeneration and reprogramming, and have helped to advance our understanding of this process as a highly coordinated and programmed cellular state. In this Primer article, we summarize some of the key findings in the field and attempt to explain them in a simple model that reconciles the normal and pathological roles for senescence.

View Article and Find Full Text PDF

Effective discovery of causal disease genes must overcome the statistical challenges of quantitative genetics studies and the practical limitations of human biology experiments. Here we developed diseaseQUEST, an integrative approach that combines data from human genome-wide disease studies with in silico network models of tissue- and cell-type-specific function in model organisms to prioritize candidates within functionally conserved processes and pathways. We used diseaseQUEST to predict candidate genes for 25 different diseases and traits, including cancer, longevity, and neurodegenerative diseases.

View Article and Find Full Text PDF

ZnT7 (Slc30a7) is a widely expressed zinc transporter involved in sequestration of zinc into the Golgi apparatus and vesicular compartments. -knockout (KO) mice are mildly zinc-deficient and lean. Despite their lean phenotype, adult male -KO mice are prone to insulin resistance.

View Article and Find Full Text PDF

A decline in female reproduction is one of the earliest hallmarks of aging in many animals, including invertebrates and mammals [1-4]. The insulin/insulin-like growth factor-1 signaling (IIS) pathway has a conserved role in regulating longevity [5] and also controls reproductive aging [2, 6]. Although IIS transcriptional targets that regulate somatic aging have been characterized [7, 8], it was not known whether the same mechanisms influence reproductive aging.

View Article and Find Full Text PDF

Senescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood.

View Article and Find Full Text PDF

Senescence-associated β-galactosidase (SAβ-gal) is a convenient histological technique used to identify senescent cells. Its ease of use is helpful to initially screen and detect senescent cells in heterogeneous cell populations both in vitro and in vivo. However, SAβ-gal staining is not an unequivocal marker of the senescent state, and diagnosis of such usually requires additional markers demonstrating an absence of proliferation and expression of cell-cycle inhibitors.

View Article and Find Full Text PDF

Mice deficient for zinc transporter 7 protein (ZnT7) are mildly zinc deficient with low body weight gain and body fat accumulation. To investigate the underlying mechanism of ZnT7 deficiency in body adiposity, we examined fatty acid composition and insulin sensitivity in visceral (epididymal) and subcutaneous fat pads from Znt7 knockout and control mice. We showed that ZnT7 deficiency had adverse effects on fatty acid metabolism and insulin action in subcutaneous fat but not in epididymal fat in mice, consistent with the ZnT7 protein expression pattern in adipose tissues.

View Article and Find Full Text PDF

Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants.

View Article and Find Full Text PDF

Cellular senescence is an irreversible form of cell cycle arrest that has been linked to several pathological conditions. In particular, senescence can function as a tumor suppressor mechanism, but is also thought to contribute to organismal aging. Paradoxically however, through the secretion of various factors, collectively termed the senescence-associated secretory phenotype (SASP), senescent cells can also have tumor-promoting and tissue-remodeling functions.

View Article and Find Full Text PDF

Adult tissue homoeostasis requires continual replacement of cells that are lost due to normal turnover, injury and disease. However, aging is associated with an overall decline in tissue function and homoeostasis, suggesting that the normal regulatory processes that govern self-renewal and regeneration may become impaired with age. Tissue-specific SCs (stem cells) lie at the apex of organismal conservation and regeneration, ultimately being responsible for continued tissue maintenance.

View Article and Find Full Text PDF

Insulin-like peptides (ILPs) play highly conserved roles in development and physiology. Most animal genomes encode multiple ILPs. Here we identify mechanisms for how the forty Caenorhabditis elegans ILPs coordinate diverse processes, including development, reproduction, longevity and several specific stress responses.

View Article and Find Full Text PDF
Article Synopsis
  • Senescence is a part of how cells stop dividing, which can help prevent tumors and is related to getting older, but it’s also found in babies before they're born.
  • Scientists have noticed that some cells in embryos act like they’re in a state of senescence, and these cells are not dividing but help with development.
  • The research shows that certain genes help control this process, and when they're missing, it can lead to problems in how the embryo develops.
View Article and Find Full Text PDF

Cellular senescence is an intrinsic defense mechanism to various cellular stresses: while still metabolically active, senescent cells stop dividing and enter a proliferation arrest. Here, we identify DPY30, a member of all mammalian histone H3K4 histone methyltransferases (HMTases), as a key regulator of the proliferation potential of human primary cells. Following depletion of DPY30, cells show a severe proliferation defect and display a senescent phenotype, including a flattened and enlarged morphology, elevated level of reactive oxygen species (ROS), increased SA-β-galactosidase activity, and formation of senescence-associated heterochromatin foci (SAHFs).

View Article and Find Full Text PDF