Intracranial EEG is used for two main purposes: to determine (i) if epileptic networks are amenable to focal treatment and (ii) where to intervene. Currently, these questions are answered qualitatively and differently across centres. There is a need to quantify the focality of epileptic networks systematically, which may guide surgical decision-making, enable large-scale data analysis and facilitate multi-centre prospective clinical trials.
View Article and Find Full Text PDFPatients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data are captured during this process, but these data currently play a small role in surgical planning.
View Article and Find Full Text PDFPurpose: An early genetic diagnosis can guide the time-sensitive treatment of individuals with genetic epilepsies. However, most genetic diagnoses occur long after disease onset. We aimed to identify early clinical features suggestive of genetic diagnoses in individuals with epilepsy through large-scale analysis of full-text electronic medical records.
View Article and Find Full Text PDFObjective: Large-language models (LLMs) can potentially revolutionize health care delivery and research, but risk propagating existing biases or introducing new ones. In epilepsy, social determinants of health are associated with disparities in care access, but their impact on seizure outcomes among those with access remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to determine if different demographic groups have different seizure outcomes.
View Article and Find Full Text PDFPatients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning.
View Article and Find Full Text PDFBackground: Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies.
View Article and Find Full Text PDFObjective: Large-language models (LLMs) in healthcare have the potential to propagate existing biases or introduce new ones. For people with epilepsy, social determinants of health are associated with disparities in access to care, but their impact on seizure outcomes among those with access to specialty care remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to test the hypothesis that different demographic groups have different seizure outcomes.
View Article and Find Full Text PDFIntroduction: Intracranial EEG (IEEG) is used for 2 main purposes, to determine: (1) if epileptic networks are amenable to focal treatment and (2) where to intervene. Currently these questions are answered qualitatively and sometimes differently across centers. There is a need for objective, standardized methods to guide surgical decision making and to enable large scale data analysis across centers and prospective clinical trials.
View Article and Find Full Text PDFEpilepsy is a neurological disorder characterized by recurrent seizures which vary widely in severity, from clinically silent to prolonged convulsions. Measuring severity is crucial for guiding therapy, particularly when complete control is not possible. Seizure diaries, the current standard for guiding therapy, are insensitive to the duration of events or the propagation of seizure activity across the brain.
View Article and Find Full Text PDFBackground: Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Optogenetics is a powerful neuroscientific tool which allows neurons to be modulated by optical stimulation. Despite widespread optogenetic experimentation in small animal models, optogenetics in non-human primates (NHPs) remains a niche field, particularly at the large scales necessary for multi-regional neural research. We previously published a large-scale, chronic optogenetic cortical interface for NHPs which was successful but came with a number of limitations.
View Article and Find Full Text PDFNon-human primates (NHPs) are precious resources for cutting-edge neuroscientific research, including large-scale viral vector-based experimentation such as optogenetics. We propose to improve surgical outcomes by enhancing the surgical preparation practices of convection-enhanced delivery (CED), which is an efficient viral vector infusion technique for large brains such as NHPs'. Here, we present both real-time and next-day MRI data of CED in the brains of ten NHPs, and we present a quantitative, inexpensive, and practical bench-side model of the in vivo CED data.
View Article and Find Full Text PDFIn this paper, we outline a method for surgical preparation that allows for the practical planning of a variety of neurosurgeries in NHPs solely using data extracted from magnetic resonance imaging (MRI). This protocol allows for the generation of 3D printed anatomically accurate physical models of the brain and skull, as well as an agarose gel model of the brain modeling some of the mechanical properties of the brain. These models can be extracted from MRI using brain extraction software for the model of the brain, and custom code for the model of the skull.
View Article and Find Full Text PDF