Background: The therapeutic resistance to ionising radiation (IR) and anti-angiogenesis mainly impair the prognosis of patients with glioblastoma. The primary and secondary MET aberrant activation is one crucial factor for these resistances. The kringle 1 domain of hepatocyte growth factor (HGFK1), an angiogenic inhibitor, contains a high-affinity binding domain of MET; however, its effects on glioblastoma remain elusive.
View Article and Find Full Text PDFMechanisms underlying the propensity of latent lung adenocarcinoma (LUAD) to relapse are poorly understood. In this study, we show how differential expression of a network of extracellular matrix (ECM) molecules and their interacting proteins contributes to risk of relapse in distinct LUAD subtypes. Overexpression of the hyaluronan receptor HMMR in primary LUAD was associated with an inflammatory molecular signature and poor prognosis.
View Article and Find Full Text PDFThe CRISPR/Cas9 system is a powerful genome editing tool and has been widely used for biomedical research. However, many challenges, such as off-target effects and lack of easy solutions for multiplex targeting, are still limiting its applications. To overcome these challenges, we first developed a highly efficient doxycycline-inducible Cas9-EGFP vector.
View Article and Find Full Text PDFMetastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that aberrant epigenetic modifications contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood.
View Article and Find Full Text PDFMolecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell-lineage-restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression.
View Article and Find Full Text PDFmiR-124 is a brain-enriched microRNA that plays a crucial role in neural development and has been shown to be down-regulated in glioma and medulloblastoma, suggesting its possible involvement in brain tumor progression. Here, we show that miR-124 is down-regulated in a panel of different grades of glioma tissues and in all of the human glioma cell lines we examined. By integrated bioinformatics analysis and experimental confirmation, we identified SNAI2, which is often up-regulated in glioma, as a direct functional target of miR-124.
View Article and Find Full Text PDFCancer has long been compared to the aberrant development of human tissues. It was in the mid-19th century writings of Rudolf Virchow and Joseph Recamier that malignant tissue was first proposed to originate from embryonal cells. More contemporary perspectives on malignant progression are founded on the tenant that tumors emerge from somatic tissues.
View Article and Find Full Text PDFA number of microRNAs (miRNAs) that are evolutionarily conserved not beyond primate lineage have been identified. These primate-specific miRNAs (ps-miRNAs) may attribute to the difference between high-level primates and non-primate mammals or lower vertebrates. Despite of their importance, the genome-wide miRNA conservation patterns and the properties of these ps-miRNAs are largely elusive.
View Article and Find Full Text PDFThe emerging concept of generating cancer stem cells from epithelial-mesenchymal transition has attracted great interest; however, the factors and molecular mechanisms that govern this putative tumor-initiating process remain largely elusive. We report here that miR-200a not only regulates epithelial-mesenchymal transition but also stem-like transition in nasopharyngeal carcinoma cells. We first showed that stable knockdown of miR-200a promotes the transition of epithelium-like CNE-1 cells to the mesenchymal phenotype.
View Article and Find Full Text PDFMakorin-2, consisting of four highly conserved C(3)H zinc fingers, a Cys-His motif and a C(3)HC(4) RING zinc finger domain, is a putative ribonucleoprotein. We have previously reported that Xenopus makorin-2 (mkrn2) is a neurogenesis inhibitor acting upstream of glycogen synthase kinase-3beta (GSK-3beta) in the phosphatidylinositol 3-kinase/Akt pathway. In an effort to identify the functional domains required for its anti-neurogenic activity, we designed and constructed a series of N- and C-terminal truncation mutants of mkrn2.
View Article and Find Full Text PDFNasopharyngeal carcinoma (NPC), a highly metastatic and invasive malignant tumor originating from the nasopharynx, is widely prevalent in Southeast Asia, the Middle East and North Africa. Although viral, dietary and genetic factors have been implicated in NPC, the molecular basis of its pathogenesis is not well defined. Based on a recent microRNA (miRNA) microarray study showing miR-200 downregulation in NPC, we further investigated the role of miR-200a in NPC carcinogenesis.
View Article and Find Full Text PDFMakorin-2 belongs to the makorin RING zinc finger gene family, which encodes putative ribonucleoproteins. Here we cloned the Xenopus makorin-2 (mkrn2) and characterized its function in Xenopus neurogenesis. Forced overexpression of mkrn2 produced tadpoles with dorso-posterior deficiencies and small-head/short-tail phenotype, whereas knockdown of mkrn2 by morpholino antisense oligonucleotides induced double axis in tadpoles.
View Article and Find Full Text PDF