Typha latifolia is widely used as a phytoremediation model plant for organic compounds. However, the dynamic uptake and translocation of pharmaceutical and personal care products (PPCPs) and their relationship with physicochemical properties, such as lipophilicity (LogKow), ionization behavior (pKa), pH-dependent lipophilicity (LogDow), exposure time and transpiration, are scarcely studied. In the current study, hydroponically grown T.
View Article and Find Full Text PDFPassive uptake of contaminants of emerging concern (CECs) and its relationship with physicochemical properties, such as lipophilicity (LogKow), ionization behavior (pKa), distribution coefficient (LogDow) and transpiration rate are scarcely studied. In the current study, hydroponically grown corn (Zea mays) was exposed to carbamazepine (CBZ), fluoxetine (FLX), gemfibrozil (GBZ), triclosan (TRI) and atrazine (ATZ)) at environmentally relevant concentrations (20 μg/L each one). Plant tissue concentrations of CECs were determined several times over 21 days.
View Article and Find Full Text PDFThe extensive use and environmental persistence of atrazine has resulted in its ubiquitous occurrence in water resources. Some reports have described atrazine bioaccumulation and biodegradation pathways in terrestrial plants, but few have done so in aquatic macrophytes. Thus, in this study, we aimed to analyze morphological changes, uptake, translocation and bioaccumulation patterns in tissues of the aquatic macrophyte Typha latifolia (cattail) after long-term atrazine exposure and to determine the presence of atrazine biodegradation metabolites, desethylatrazine (DEA) and desisopropylatrazine (DIA), in tissues.
View Article and Find Full Text PDF