Publications by authors named "William Jerome"

This study investigated long COVID of patients in the Montefiore Health System COVID-19 (CORE) Clinics in the Bronx with an emphasis on identifying health related social needs (HRSNs). We analyzed a cohort of 643 CORE patients (6/26/2020-2/24/2023) and 52,089 non-CORE COVID-19 patients. Outcomes included symptoms, physical, emotional, and cognitive function test scores obtained at least three months post-infection.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-based exosomes have garnered attention as a viable therapeutic for post-traumatic cartilage injury and osteoarthritis of the knee; however, efforts for application have been limited due to issues with variable dosing and rapid clearance in vivo. Scaffolds laden with MSC-based exosomes have recently been investigated as a solution to these issues. Here, we review in vivo studies and highlight key strengths and potential clinical uses of exosome-scaffold therapeutics for treatment of post-traumatic cartilage injury and osteoarthritis.

View Article and Find Full Text PDF

Unlabelled: Diffuse midline gliomas are uniformly fatal pediatric central nervous system cancers that are refractory to standard-of-care therapeutic modalities. The primary genetic drivers are a set of recurrent amino acid substitutions in genes encoding histone H3 (H3K27M), which are currently undruggable. These H3K27M oncohistones perturb normal chromatin architecture, resulting in an aberrant epigenetic landscape.

View Article and Find Full Text PDF

Current strategies for the delivery of proteins into cells face general challenges of endosomal entrapment and concomitant degradation of protein cargo. Efficient delivery directly to the cytosol overcomes this obstacle: we report here the use of biotin-streptavidin tethering to provide a modular approach to the generation of nanovectors capable of a cytosolic delivery of biotinylated proteins. This strategy uses streptavidin to organize biotinylated protein and biotinylated oligo(glutamate) peptide into modular complexes that are then electrostatically self-assembled with a cationic guanidinium-functionalized polymer.

View Article and Find Full Text PDF

Intracellular protein delivery enables selective regulation of cellular metabolism, signaling, and development through introduction of defined protein quantities into the cell. Most applications require that the delivered protein has access to the cytosol, either for protein activity or as a gateway to other organelles such as the nucleus. The vast majority of delivery vehicles employ an endosomal pathway however, and efficient release of entrapped protein cargo from the endosome remains a challenge.

View Article and Find Full Text PDF