Publications by authors named "William J Skirving"

The Great Barrier Reef (GBR) is predicted to undergo its sixth mass coral bleaching event during the Southern Hemisphere summer of 2021-2022. Coral bleaching-level heat stress over the GBR is forecast to start earlier than any previous year in the satellite record (1985-present). The National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch (CRW) near real-time satellite-based heat stress products were used to investigate early-summer sea surface temperature (SST) and heat stress conditions on the GBR during late 2021.

View Article and Find Full Text PDF

Increases in the magnitude, frequency, and duration of warm seawater temperatures are causing mass coral mortality events across the globe. Although, even during the most extensive bleaching events, some reefs escape exposure to severe stress, constituting potential refugia. Here, we identify present-day climate refugia on the Great Barrier Reef (GBR) and project their persistence into the future.

View Article and Find Full Text PDF
Article Synopsis
  • Tropical coral reefs are highly vulnerable to climate change impacts, making it crucial to limit global warming to 1.5°C as proposed in the Paris Agreement.
  • Recent climate models from the Intergovernmental Panel on Climate Change (CMIP6) show that sticking to the 1.5°C target significantly reduces severe bleaching events in the Great Barrier Reef compared to a 2°C scenario.
  • Projections suggest that by 2080, under high-emission pathways, the frequency and intensity of thermal stress on coral reefs could increase dramatically, emphasizing the urgent need for low emissions to protect these vital ecosystems.
View Article and Find Full Text PDF

Environmental anomalies that trigger adverse physiological responses and mortality are occurring with increasing frequency due to climate change. At species' range peripheries, environmental anomalies are particularly concerning because species often exist at their environmental tolerance limits and may not be able to migrate to escape unfavourable conditions. Here, we investigated the bleaching response and mortality of 14 coral genera across high-latitude eastern Australia during a global heat stress event in 2016.

View Article and Find Full Text PDF

Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages.

View Article and Find Full Text PDF

Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa.

View Article and Find Full Text PDF

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year.

View Article and Find Full Text PDF

Background: The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin.

Methodology/principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005.

View Article and Find Full Text PDF

Coral reefs are under increasing pressure in a changing climate, one such threat being more frequent and destructive outbreaks of coral diseases. Thermal stress from rising temperatures has been implicated as a causal factor in disease outbreaks observed on the Great Barrier Reef, Australia, and elsewhere in the world. Here, we examine seasonal effects of satellite-derived temperature on the abundance of coral diseases known as white syndromes on the Great Barrier Reef, considering both warm stress during summer and deviations from mean temperatures during the preceding winter.

View Article and Find Full Text PDF

Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef-building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long-term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere-ocean general circulation models (GCMs) to the local conditions around representative coral reefs.

View Article and Find Full Text PDF