Publications by authors named "William J Kowalski"

Embryos devoid of autonomic innervation suffer sudden cardiac death. However, whether autonomic neurons have a role in heart development is poorly understood. To investigate if sympathetic neurons impact cardiomyocyte maturation, we co-cultured phenotypically immature cardiomyocytes derived from human induced pluripotent stem cells with mouse sympathetic ganglion neurons.

View Article and Find Full Text PDF

The delivery of cells into damaged myocardium induces limited cardiac regeneration due to extensive cell death. In an effort to limit cell death, our lab formulates three-dimensional matrices as a delivery system for cell therapy. Our primary work has been focused on the formation of engineered cardiac tissues (ECTs) from human-induced pluripotent stem cell-derived engineered cardiac cells.

View Article and Find Full Text PDF

The current protocol describes methods to generate scalable, mesh-shaped engineered cardiac tissues (ECTs) composed of cardiovascular cells derived from human induced pluripotent stem cells (hiPSCs), which are developed towards the goal of clinical use. HiPSC-derived cardiomyocytes, endothelial cells, and vascular mural cells are mixed with gel matrix and then poured into a polydimethylsiloxane (PDMS) tissue mold with rectangular internal staggered posts. By culture day 14 ECTs mature into a 1.

View Article and Find Full Text PDF

The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr.

View Article and Find Full Text PDF

The immaturity of human induced pluripotent stem cell derived engineered cardiac tissues limits their ability to regenerate damaged myocardium and to serve as robust models for human disease and drug toxicity studies. Several chronic biomimetic conditioning protocols, including mechanical stretch, perfusion, and/or electrical stimulation promote engineered cardiac tissue maturation but have significant technical limitations. Non-contacting chronic optical stimulation using heterologously expressed channelrhodopsin light-gated ion channels, termed optogenetics, may be an advantageous alternative to chronic invasive electrical stimulation for engineered cardiac tissue conditioning.

View Article and Find Full Text PDF

Embryonic aortic arches (AA) are initially bilaterally paired, transitional vessels and failures in remodeling based on hemodynamic and growth-related adaptations cause a spectrum of congenital heart disease (CHD) anatomies. Identifying regulatory mechanisms and cross-talk between the genetic elements of these vessels are critical to understand the ethiology of CHD and refine predictive computational models. This study aims to screen expression profiles of fundamental biological pathways in AA at early stages of chick embryo morphogenesis and correlate them with our current understanding of growth and mechanical loading.

View Article and Find Full Text PDF

Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms.

View Article and Find Full Text PDF

The current study describes a scalable, porous large-format engineered cardiac tissue (LF-ECT) composed of human induced pluripotent stem cells (hiPSCs) derived multiple lineage cardiac cells with varied 3D geometries and cell densities developed towards the goal of scale-up for large animal pre-clinical studies. We explored multiple 15 × 15 mm ECT geometries using molds with rectangular internal staggered posts (mesh, ME), without posts (plain sheet, PS), or long parallel posts (multiple linear bundles, ML) and a gel matrix containing hiPSC-derived cardiomyocytes, endothelial, and vascular mural cells matured in vitro for 14 days. ME-ECTs displayed the lowest dead cell ratio (p < 0.

View Article and Find Full Text PDF

The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD) and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) are a robust source for cardiac regenerative therapy due to their potential to support autologous and allogeneic transplant paradigms. The in vitro generation of three-dimensional myocardial tissue constructs using biomaterials as an implantable hiPSC-derived myocardium provides a path to realize sustainable myocardial regeneration. We generated engineered cardiac tissues (ECTs) from three cellular compositions of cardiomyocytes (CMs), endothelial cells (ECs), and vascular mural cells (MCs) differentiated from hiPSCs.

View Article and Find Full Text PDF

Hemodynamics of the fetal to neonatal transition are orchestrated through complex physiological changes and results in cardiovascular adaptation to the adult biventricular circulation. Clinical practice during this critical period can influence vital organ physiology for normal newborns, premature babies and congenital heart defect patients. Particularly, the timing of the cord clamping procedure, immediate (ICC) vs.

View Article and Find Full Text PDF

The majority of severe clinically significant forms of congenital heart disease (CHD) are associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unknown. Here, we combine computational fluid dynamics (CFD) simulations with in vivo experiments to test how individual pharyngeal arch artery hemodynamics alter as a result of local interventions obstructing individual arch artery flow.

View Article and Find Full Text PDF

Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling.

View Article and Find Full Text PDF

Microparticle image velocimetry (μPIV) is an evolving quantitative methodology to closely and accurately monitor the cardiac flow dynamics and mechanotransduction during vascular morphogenesis. While PIV technique has a long history, contemporary developments in advanced microscopy have significantly expanded its power. This chapter includes three new methods for μPIV acquisition in selected embryonic structures achieved through advanced optical imaging: (1) high-speed confocal scanning of transgenic zebrafish embryos, where the transgenic erythrocytes act as the tracing particles; (2) microinjection of artificial seeding particles in chick embryos visualized with stereomicroscopy; and (3) real-time, time-resolved optical coherence tomography acquisition of vitelline vessel flow profiles in chick embryos, tracking the erythrocytes.

View Article and Find Full Text PDF

Background: Hypoplastic left heart syndrome (HLHS) is a major human congenital heart defect that results in single ventricle physiology and high mortality. Clinical data indicate that intracardiac blood flow patterns during cardiac morphogenesis are a significant etiology. We used the left atrial ligation (LAL) model in the chick embryo to test the hypothesis that LAL immediately alters intracardiac flow streams and the biomechanical environment, preceding morphologic and structural defects observed in HLHS.

View Article and Find Full Text PDF

Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling.

View Article and Find Full Text PDF

In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play an important role in the development of normal arch configurations or the aberrant arch morphologies associated with congenital cardiac defects.

View Article and Find Full Text PDF