Background: In humans, inorganic arsenic (iAs) is metabolized to methylated arsenical species in a multistep process mainly mediated by arsenic (+3 oxidation state) methyltransferase (AS3MT). Among these metabolites is monomethylarsonous acid (MMAIII), the most toxic arsenic species. A recent study in As3mt-knockout mice suggests that unidentified methyltransferases could be involved in alternative iAs methylation pathways.
View Article and Find Full Text PDFArsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (As(III)).
View Article and Find Full Text PDFArsenic is a human toxin and carcinogen commonly found as a contaminant in drinking water. Arsenite (As(III)) is the most toxic inorganic form, but recent evidence indicates that the metabolite monomethylarsonous acid (MMA(III)) is even more toxic. We have used a chemical genomics approach to identify the genes that modulate the cellular toxicity of MMA(III) and As(III) in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFBackground: Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast Saccharomyces cerevisiae has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions.
View Article and Find Full Text PDFBenzene is an established human hematotoxicant and leukemogen but its mechanism of action is unclear. To investigate the role of single-nucleotide polymorphisms (SNPs) on benzene-induced hematotoxicity, we analyzed 1395 SNPs in 411 genes using an Illumina GoldenGate assay in 250 benzene-exposed workers and 140 unexposed controls. Highly significant findings clustered in five genes (BLM, TP53, RAD51, WDR79 and WRN) that play a critical role in DNA repair and genomic maintenance, and these regions were then further investigated with tagSNPs.
View Article and Find Full Text PDFCopper is an essential micronutrient for all biological systems. Multiple proteins require one or more atoms of copper for proper structure and function, but excess of copper is toxic. To prevent the consequences of copper deficiency and overload, living organisms have evolved molecular mechanisms that regulate its uptake, intracellular traffic, storage, and efflux.
View Article and Find Full Text PDFIron and copper are essential nutrients for life as they are required for the function of many proteins but can be toxic if present in excess. Accumulation of these metals in the human body as a consequence of overload disorders and/or high environmental exposures has detrimental effects on health. The budding yeast Saccharomyces cerevisiae is an accepted cellular model for iron and copper metabolism in humans primarily because of the high degree of conservation between pathways and proteins involved.
View Article and Find Full Text PDF