Antibody-based drugs, which now represent the dominant biologic therapeutic modality, are used to modulate disparate signaling pathways across diverse disease indications. One fundamental premise that has driven this therapeutic antibody revolution is the belief that each monoclonal antibody exhibits exquisitely specific binding to a single-drug target. Herein, we review emerging evidence in antibody off-target binding and relate current key findings to the risk of failure in therapeutic development.
View Article and Find Full Text PDFWe live in an era of rapidly advancing computing capacity and algorithmic sophistication. "Big data" and "artificial intelligence"find progressively wider use in all spheres of human activity, including healthcare. A diverse array of computational technologies is being applied with increasing frequency to antibody drug research and development (R&D).
View Article and Find Full Text PDFMonoclonal anti-programmed cell death 1 (PD1) antibodies are successful cancer therapeutics, but it is not well understood why individual antibodies should have idiosyncratic side-effects. As the humanized antibody SHR-1210 causes capillary hemangioma in patients, a unique toxicity amongst anti-PD1 antibodies, we performed human receptor proteome screening to identify nonspecific interactions that might drive angiogenesis. This screen identified that SHR-1210 mediated aberrant, but highly selective, low affinity binding to human receptors such as vascular endothelial growth factor receptor 2 (VEGFR2), frizzled class receptor 5 and UL16 binding protein 2 (ULBP2).
View Article and Find Full Text PDFHigh-affinity, highly specific binding proteins are a key class of molecules used in the development of new affinity chromatography methods. Traditionally, antibody-based methods have relied on the use of immunoglobulins purified from immune animal sera, from egg yolks, or from murine monoclonal hybridoma supernatants. To accelerate and refine the reagent antibody generation process, we have developed optimized methods that allow the rapid assembly of scFv libraries from chickens immunized with pools of immunogens.
View Article and Find Full Text PDFAntibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography, enzyme-linked immunosorbent assays (ELISA), flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry techniques. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents.
View Article and Find Full Text PDFBispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format.
View Article and Find Full Text PDFAlthough humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position.
View Article and Find Full Text PDFFully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10.
View Article and Find Full Text PDFWhile myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation.
View Article and Find Full Text PDFWe have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3.
View Article and Find Full Text PDFAntibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets.
View Article and Find Full Text PDFHighly specific antibodies to phosphoepitopes are valuable tools to study phosphorylation in disease states, but their discovery is largely empirical, and the molecular mechanisms mediating phosphospecific binding are poorly understood. Here, we report the generation and characterization of extremely specific recombinant chicken antibodies to three phosphoepitopes on the Alzheimer disease-associated protein tau. Each antibody shows full specificity for a single phosphopeptide.
View Article and Find Full Text PDFProtein engineering techniques can facilitate the direct de-convolution of specific domains, regions, and particular amino acids that contribute to protein function. Many tools are available to aid this enterprise and herein we describe one such tool, a technique we term "Molecular Scanning" (MS). MS is analogous to previously described alanine scanning in that it samples potentially functional sequence space, but differs in that it uses Error-Prone polymerase chain reaction to randomly introduce all amino acids across the sequence space, as opposed to simply introducing alanine at each desired position.
View Article and Find Full Text PDFExamination of 1269 unique naive chicken V(H) sequences showed that the majority of positions in the framework (FW) regions were maintained as germline, with high mutation rates observed in the CDRs. Many FW mutations could be clearly related to the modulation of CDR structure or the V(H)-V(L) interface. CDRs 1 and 2 of the V(H) exhibited frequent mutation in solvent-exposed positions, but conservation of common structural residues also found in human CDRs at the same positions.
View Article and Find Full Text PDFWe present a method for synthetic antibody library generation that combines the use of high-throughput immune repertoire analysis and a novel synthetic technology. The library design recapitulates positional amino acid frequencies observed in natural antibody repertoires. V-segment diversity in four heavy (V(H)) and two kappa (V(κ)) germlines was introduced based on the analysis of somatically hypermutated donor-derived repertoires.
View Article and Find Full Text PDFThis study aims at generating immune chicken phage display libraries and single-chain antibodies (scFvs) specifically directed against cell surface markers of cultured peripheral blood mononuclear cells (PBMCs) that contain endothelial progenitor cells (EPCs). In contrast to previous approaches that use well-defined recombinant antigens attached to plastic surfaces that may alter the structure of the proteins, the authors describe a method that maintains the cell surface markers on live cells while providing the opportunity to rapidly screen entire libraries for antibodies that bind to unknown cell surface markers of progenitor/stem cells. Chickens immunized with live EPCs, consisting of a heterogeneous population of lymphocytes and monocytes, demonstrated a robust immune response.
View Article and Find Full Text PDFHigh-affinity, highly specific binding proteins are a key class of molecules used in the development of new affinity chromatography methods. Traditionally, antibody-based methods have relied on the use of whole immunoglobulins purified from immune animal sera, from egg yolks, or from murine monoclonal hybridoma supernatants. To accelerate and refine the reagent antibody generation process, we have developed optimized methods that allow the rapid assembly of scFv libraries from chickens immunized with pools of immunogens.
View Article and Find Full Text PDFAntibodies are critical reagents in many fundamental biochemical methods such as affinity chromatography. As our understanding of the proteome becomes more complex, demand is rising for rapidly generated antibodies of higher specificity than ever before. It is therefore surprising that few investigators have moved beyond the classical methods of antibody production in their search for new reagents.
View Article and Find Full Text PDFOver the past 10 years, a growing field of research supporting the value of myeloperoxidase (MPO) as a prognostic indicator in acute cardiac pathophysiologies has emerged. The availability of a rapid and disposable MPO detection platform would enable research clinicians to more readily assess MPO indications for guiding therapy and also facilitate clinicians at the patient interface to readily adopt MPO testing and potentially drive more informed prognoses. Here we describe the isolation of a high-affinity avian MPO-specific recombinant antibody panel using phage display.
View Article and Find Full Text PDFBackground & Aims: Late diagnosis of colorectal carcinoma results in a significant reduction of average survival times. Yet despite screening programs, about 70% of tumors are detected at advanced stages (International Union Against Cancer stages III/IV). We explored whether detection of malignant disease would be possible through identification of tumor-specific protein biomarkers in serum samples.
View Article and Find Full Text PDFAntibody-based assay systems are now accepted by regulatory authorities for detection of the toxins produced by phytoplankton that accumulate in shellfish tissues. However, the generation of suitable antibodies for sensitive assay development remains a major challenge. We have examined the potential of using the chicken immune system to generate high-affinity, high-specificity recombinant antibody fragments against phytotoxins.
View Article and Find Full Text PDF