Publications by authors named "William J Andrews"

In eukaryotes, ribosome biogenesis is driven by the synthesis of the ribosomal RNA (rRNA) by RNA polymerase I (Pol-I) and is tightly linked to cell growth and proliferation. The 3D-structure of the rDNA promoter plays an important, yet not fully understood role in regulating rRNA synthesis. We hypothesized that DNA intercalators/groove binders could affect this structure and disrupt rRNA transcription.

View Article and Find Full Text PDF

The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers for a range of conditions. One rate-limiting factor in miRNA detection is the time taken to perform quantitative real-time PCR (qPCR) amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes.

View Article and Find Full Text PDF

Transcription by RNA polymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear.

View Article and Find Full Text PDF

IQGAPs are cytoskeletal scaffolding proteins which collect information from a variety of signalling pathways and pass it on to the microfilaments and microtubules. There is a well-characterised interaction between IQGAP and calmodulin through a series of IQ-motifs towards the middle of the primary sequence. However, it has been shown previously that the calponin homology domain (CHD), located at the N-terminus of the protein, can also interact weakly with calmodulin.

View Article and Find Full Text PDF

2,4-Disubstituted furans are prepared by treating 2,3-dibromo-1-phenylsulfonyl-1-propene (DBP, 2) with 1,3-diketones under basic conditions. The furan-forming step involves a deacetylation, and the selectivity of this process depends upon the steric demand of the R group. The substituent in position 4 is elaborated by reaction of sulfonyl carbanions with alkyl halides, acyl halides, and aldehydes.

View Article and Find Full Text PDF

The intramolecular oxa-conjugate addition of tethered triethylsilyloxy substituted alpha,beta-unsaturated ketones mediated by bismuth(III) nitrate pentahydrate provides a mild and efficient method for the stereoselective construction of cis-2,6-disubstituted tetrahydropyrans.

View Article and Find Full Text PDF

Background: The incidence of diabetes is increasing worldwide and with it the risk of diabetic complications. The aim of this study was to characterise parameters associated with neuropathy and/or retinopathy in a hospital outpatient diabetic clinic population.

Method: A structured questionnaire addressing diabetes related factors and demography was administered to a cross-sectional sample of patients (n = 290) with type 1 and type 2 diabetes attending a hospital diabetic outpatient clinic.

View Article and Find Full Text PDF

Inhibition of aromatase activity is an established endocrine therapy in the treatment of hormone-dependent breast cancer. Recent studies on aromatase inhibition by the synthetic retinoid 4HPR, also known as fenretinide, and the PPARgamma agonist 15-dPGJ(2) have implicated a direct receptor-independent, redox-sensitive mechanism of action. The signalling molecule ceramide has also been previously implicated as a negative regulator of aromatase activity.

View Article and Find Full Text PDF