Publications by authors named "William Harkcom"

Transmembrane channel-like protein isoform 1 (TMC1) is essential for the generation of mechano-electrical transducer currents in hair cells of the inner ear. TMC1 disruption causes hair cell degeneration and deafness in mice and humans. Although thought to be expressed at the cell surface in vivo, TMC1 remains in the endoplasmic reticulum when heterologously expressed in standard cell lines, precluding determination of its roles in mechanosensing and pore formation.

View Article and Find Full Text PDF

Intense noise exposure causes hearing loss by inducing degeneration of spiral ganglia neurites that innervate cochlear hair cells. Nicotinamide adenine dinucleotide (NAD(+)) exhibits axon-protective effects in cultured neurons; however, its ability to block degeneration in vivo has been difficult to establish due to its poor cell permeability and serum instability. Here, we describe a strategy to increase cochlear NAD(+) levels in mice by administering nicotinamide riboside (NR), a recently described NAD(+) precursor.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD(+)) is an endogenous enzyme cofactor and cosubstrate that has effects on diverse cellular and physiologic processes, including reactive oxygen species generation, mitochondrial function, apoptosis, and axonal degeneration. A major goal is to identify the NAD(+)-regulated cellular pathways that may mediate these effects. Here we show that the dynamic assembly and disassembly of microtubules is markedly altered by NAD(+).

View Article and Find Full Text PDF

Continuous, rhythmic beating of the heart requires exquisite control of expression, localization and function of cardiac ion channels - the foundations of the cardiac myocyte action potential. Disruption of any of these processes can alter the shape of the action potential, predisposing to cardiac arrhythmias. These arrhythmias can manifest in a variety of ways depending on both the channels involved and the type of disruption (i.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) functions in the deamination of monoamines, including dopamine and norepinephrine. The search for MAO-B inhibitors increased following the discovery that the enzyme may be responsible for generating neurotoxins from various endogenous or exogenous compounds. Computational screening methods aid in the search for new inhibitors, but validation studies for specific software packages and receptors are necessary for effective application of these methods.

View Article and Find Full Text PDF