Publications by authors named "William H duBell"

Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days.

View Article and Find Full Text PDF

Studies have suggested that integration of kinase and phosphatase activities maintains the steady-state L-type Ca(2+) current in ventricular myocytes, a balance disrupted in failing hearts. As we have recently reported that the PP1/PP2A inhibitor calyculin A evokes pronounced increases in L-type I(Ca), the goal of this study was to identify the counteracting kinase and phosphatase that determine 'basal'I(Ca) in isolated mouse ventricular myocytes. Whole-cell voltage-clamp studies, with filling solutions containing 10 mm EGTA, revealed that calyculin A (100 nm) increased I(Ca) at test potentials between -42 and +49 mV (44% at 0 mV) from a holding potential of -80 mV.

View Article and Find Full Text PDF

Mutations in ion channels involved in the generation and termination of action potentials constitute a family of molecular defects that underlie fatal cardiac arrhythmias in inherited long-QT syndrome. We report here that a loss-of-function (E1425G) mutation in ankyrin-B (also known as ankyrin 2), a member of a family of versatile membrane adapters, causes dominantly inherited type 4 long-QT cardiac arrhythmia in humans. Mice heterozygous for a null mutation in ankyrin-B are haploinsufficient and display arrhythmia similar to humans.

View Article and Find Full Text PDF

Calyculin A was used to examine the importance of phosphatases in the modulation of cardiac contractile magnitude in the absence of any neural or humoral stimulation. Protein phosphatase (PP)1 and PP2A activity, twitch contractions, intracellular Ca(2+) concentration ([Ca(2+)](i)) transients, action potentials, membrane currents, and myofilament Ca(2+) sensitivity were measured in isolated mouse ventricular myocytes. Calyculin A (125 nM) inhibited PP1 and PP2A by 50% and 85%, respectively, whereas it doubled the twitch magnitude and increased twitch duration by 50% in field-stimulated cells.

View Article and Find Full Text PDF