Public attitudes toward science in the United States can profoundly affect national well-being, and even national security. We live in a time when these attitudes are considerably more negative than usual. This critical assessment identifies a number of contributors to public antipathy toward science, some of which are intrinsic to the nature of science and as old as science itself, and some of which are external to science, have arisen recently, and may be unique to the present.
View Article and Find Full Text PDFThe route of O₂to and from the high-spin heme in heme-copper oxidases has generally been believed to emulate that of carbon monoxide (CO). Time-resolved and stationary infrared experiments in our laboratories of the fully reduced CO-bound enzymes, as well as transient optical absorption saturation kinetics studies as a function of CO pressure, have provided strong support for CO binding to CuB⁺ on the pathway to and from the high-spin heme. The presence of CO on CuB⁺ suggests that O₂binding may be compromised in CO flow-flash experiments.
View Article and Find Full Text PDFWe report an investigation of complexes of the type M(2)(dmp)(4) (M = Mo, Cr; dmp = 2,6-dimethoxyphenyl) using resonance Raman (RR) spectroscopy, Cr isotopic substitution, and density functional theory (DFT) calculations. Assignment of the Mo-Mo stretching vibration in the Mo(2) species is straightforward, as evidenced by a single resonance-enhanced band at 424 cm(-1), consistent with an essentially unmixed metal-metal stretch, and overtones of this vibration. On the other hand, the Cr(2) congener has no obvious metal-metal stretching mode near 650-700 cm(-1), where empirical predictions based on the Cr-Cr distance as well as DFT calculations suggest that this vibration should appear if unmixed.
View Article and Find Full Text PDFAll organisms face the problem of how to fuel ontogenetic growth. We present a model, empirically grounded in data from birds and mammals, that correctly predicts how growing animals allocate food energy between synthesis of new biomass and maintenance of existing biomass. Previous energy budget models have typically had their bases in rates of either food consumption or metabolic energy expenditure.
View Article and Find Full Text PDFThe ontogenetic growth model (OGM) of West et al. provides a general description of how metabolic energy is allocated between production of new biomass and maintenance of existing biomass during ontogeny. Here, we reexamine the OGM, make some minor modifications and corrections, and further evaluate its ability to account for empirical variation on rates of metabolism and biomass in vertebrates both during ontogeny and across species of varying adult body size.
View Article and Find Full Text PDFThe size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and average cellular metabolic rate cannot both remain constant with changes in body size because of the well known body-size dependence of whole-organism metabolic rate.
View Article and Find Full Text PDFMicroperoxidase-11 has been immobilized on siliceous materials MCM-41 and SBA-15 and on amino-functionalized SBA-15. Resonance Raman spectroscopy has provided solid evidence that the exogenous species occupy the pores of the mesoporous silica materials. Photoreduction of the microperoxidase-11 Fe(III) center has been observed to occur in the immobilized samples and results in a long-lived stable reduced heme.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2005
Understanding the storage, flux, and turnover of nutrients in organisms is important for quantifying contributions of biota to biogeochemical cycles. Here we present a model that predicts the storage of phosphorus-rich RNA and whole-body phosphorus content in eukaryotes based on the mass- and temperature-dependence of ATP production in mitochondria. Data from a broad assortment of eukaryotes support the model's two main predictions.
View Article and Find Full Text PDFFTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination.
View Article and Find Full Text PDFWe report CW-EPR, ESEEM, and structural NMR results, as well as DFT calculations, on model compounds relevant to the unusual cross-linked Tyr-His (YH) moiety at the active site of the heme-copper oxidases. CW-EPR spectra of an (15)N isotopically labeled 4-methyl-2-(4-methyl-imidazole-1-yl)-phenol radical are nearly identical to those of the natural abundance (14)N compound. We obtain good simulations of these EPR spectra without including hyperfine couplings to the nitrogen nuclei.
View Article and Find Full Text PDFInfrared spectroscopy, isotopic labeling ([(15)N(delta,epsilon)]histidine and ring-deuterated tyrosine), synthetic model studies, and normal mode calculations are employed to search for the spectroscopic signatures of the unique, covalently linked (His N(epsilon)-C(epsilon) Tyr) biring structure in the heme-copper oxidases. The specific enzyme examined is the cytochrome bo(3) quinol oxidase of E. coli.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2002
The fact that metabolic rate scales as the three-quarter power of body mass (M) in unicellular, as well as multicellular, organisms suggests that the same principles of biological design operate at multiple levels of organization. We use the framework of a general model of fractal-like distribution networks together with data on energy transformation in mammals to analyze and predict allometric scaling of aerobic metabolism over a remarkable 27 orders of magnitude in mass encompassing four levels of organization: individual organisms, single cells, intact mitochondria, and enzyme molecules. We show that, whereas rates of cellular metabolism in vivo scale as M(-1/4), rates for cells in culture converge to a single predicted value for all mammals regardless of size.
View Article and Find Full Text PDFWe have used cryogenic difference FTIR and time-resolved step-scan Fourier transform infrared (TR-FTIR) spectroscopies to explore the redox-linked proton-pumping mechanism of heme-copper respiratory oxidases. These techniques are used to probe the structure and dynamics of the heme a(3)-Cu(B) binuclear center and the coupled protein structures in response to the photodissociation of CO from heme Fe and its subsequent binding to and dissociation from Cu(B). Previous cryogenic (80 K) FTIR CO photodissociation difference results were obtained for cytochrome bo(3), the ubiquinol oxidase of Escherichia coli [Puustinen, A.
View Article and Find Full Text PDFSolution ((1)H NMR, Evans method magnetic susceptibility, resonance Raman) and X-ray crystallographic spectroscopic studies of intertriad heterodimeric [(OEP)MoOs(OEP)] (3), [(OEP)WRu(OEP)] (4), [(OEP)MoOs(TPP)]PF(6) (5(+)), and [(OEP)WRu(TPP)]PF(6) (6(+)) metalloporphyrins are reported (OEP = 2,3,7,8,12,13,17,18-octaethylporphyrinato; TPP = 5,10,15,20-tetraphenylporphyrinato). Evans method magnetic susceptibility data indicate that 3 and 4 contain two unpaired electrons in the ground electronic configuration. Resonance Raman spectra of 3, 4, 5(+), and 6(+) suggest that WRu bonds are 5-10% stronger than corresponding MoOs species.
View Article and Find Full Text PDFSolution (VT NMR, Evans method magnetic susceptibility, resonance Raman) and solid-state (SQUID magnetic susceptibility, X-ray crystallography) spectroscopic studies of intertriad heterodimeric [(OEP)MoRu(OEP)] (1), [(OEP)WOs(OEP)] (2), and [(OEP)MoRu(TPP)]PF(6) (3(+)) metalloporphyrins are reported (OEP = 2,3,7,8,12,13,17,18-octaethylporphyrinato; TPP = 5,10,15,20-tetraphenylporphyrinato). Solution and solid-state magnetic susceptibility data indicate that 1 and 2 contain two unpaired electrons in the ground electronic configuration. The presence of a delta bond in 3(+) has been confirmed by structural characterization.
View Article and Find Full Text PDFResonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed.
View Article and Find Full Text PDF