Kerr resonators generate stable frequency combs and ultrashort pulses with applications in telecommunications, biomedicine, and metrology. Chirped pulse solitons recently observed in normal dispersion Kerr resonators with an intracavity spectral filter can enable new material design freedom, reduced fabrication requirements, and the potential for improved ultrashort pulse peak powers. This study examines the design and formation properties of chirped-pulse Kerr solitons essential for enabling these advances.
View Article and Find Full Text PDFSurface acoustic waves (SAW) and associated devices are ideal for sensing, metrology, and hybrid quantum devices. While the advances demonstrated to date are largely based on electromechanical coupling, a robust and customizable coherent optical coupling would unlock mature and powerful cavity optomechanical control techniques and an efficient optical pathway for long-distance quantum links. Here we demonstrate direct and robust coherent optical coupling to Gaussian surface acoustic wave cavities with small mode volumes and high quality factors (>10 measured here) through a Brillouin-like optomechanical interaction.
View Article and Find Full Text PDFFiber Kerr resonators are simple driven resonators with desirable wavelength and repetition rate flexibility for generating ultrashort pulses for applications including telecommunications, biomedicine, and materials processing. However, fiber Kerr resonators to date often generate longer pulses and require more complicated techniques for generating single pulses than would be desirable for applications. Here we address these limits by demonstrating robust single-pulse performance supporting 120-fs pulse durations in fiber Kerr resonators based on stretched-pulse solitons.
View Article and Find Full Text PDFOptical Kerr resonators support a variety of stable nonlinear phenomena in a simple and compact design. The generation of ultrashort pulses and frequency combs has been shown to benefit several applications, including spectroscopy and telecommunications. The most common anomalous dispersion Kerr resonators can be accurately described by a well-studied mean-field Lugiato-Lefever equation (LLE).
View Article and Find Full Text PDFSolitons are self-sustaining particle-like wave packets found throughout nature. Optical systems such as optical fibers and mode-locked lasers are relatively simple, are technologically important, and continue to play a major role in our understanding of the rich nonlinear dynamics of solitons. Here we present theoretical and experimental observations of a new class of optical soliton characterized by pulses with large and positive chirp in normal dispersion resonators with strong spectral filtering.
View Article and Find Full Text PDFKerr resonators support novel nonlinear wave phenomena including technologically important optical solitons. Fiber Kerr resonator solitons enable wavelength and repetition-rate versatile femtosecond-pulse and frequency-comb generation. However, key performance parameters, such as pulse duration, lag behind those from traditional mode-locked laser-based sources.
View Article and Find Full Text PDFTo date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase-matched Brillouin interactions between two distinct optical cavity modes.
View Article and Find Full Text PDFMechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260.
View Article and Find Full Text PDFUltrashort pulsed mode-locked lasers enable research at new time-scales and revolutionary technologies from bioimaging to materials processing. In general, the performance of these lasers is determined by the degree to which the pulses of a particular resonator can be scaled in energy and pulse duration before destabilizing. To date, milestones have come from the application of more tolerant pulse solutions, drawing on nonlinear concepts like soliton formation and self-similarity.
View Article and Find Full Text PDFA single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits.
View Article and Find Full Text PDFAs optical fiber communications and fiber lasers approach fundamental limits there is considerable interest in multimode fibers. In nonlinear science, they represent an exciting environment for complex nonlinear waves. As in single-mode fiber, solitons may be particularly important.
View Article and Find Full Text PDFIEEE J Sel Top Quantum Electron
January 2012
Fiber lasers mode locked with large normal group-velocity dispersion have recently achieved femtosecond pulse durations with energies and peak powers at least an order of magnitude greater than those of prior approaches. Several new mode-locking regimes have been demonstrated, including self-similar pulse propagation in passive and active fibers, dissipative solitons, and a pulse evolution that avoids wave breaking at high peak power but has not been reproduced by theoretical treatment. Here, we illustrate the main features of these new pulse-shaping mechanisms through the results of numerical simulations that agree with experimental results.
View Article and Find Full Text PDFMode-locking refers to the generation of ultrashort optical pulses in laser systems. A comprehensive study of achieving high-energy pulses in a ring cavity fiber laser that is passively mode-locked by a series of waveplates and a polarizer is presented in this paper. Specifically, it is shown that the multipulsing instability can be circumvented in favor of bifurcating to higher-energy single pulses by appropriately adjusting the group velocity dispersion in the fiber and the waveplate/polarizer settings in the saturable absorber.
View Article and Find Full Text PDFAmplifier similaritons are generated in a dispersion-mapped fiber laser. Output pulse parameters are nearly independent of the net group velocity dispersion (GVD) owing to the strong local nonlinear attraction in the gain fiber, which dictates the pulse evolution. This constitutes a stable mode-locking regime that is capable of generating sub-100-fs pulses over a broad range of anomalous and normal GVD.
View Article and Find Full Text PDFParabolic amplifier similaritons are observed inside a normal-dispersion laser. The self-similar pulse is a local nonlinear attractor in the gain segment of the oscillator. The evolution in the laser exhibits large (20 times) spectral breathing, and the pulse chirp is less than the group-velocity dispersion of the cavity.
View Article and Find Full Text PDFSoliton area theorems express the pulse energy as a function of the pulse shape and the system parameters. From an analytical solution to the cubic-quintic Ginzbug-Landau equation, we derive an area theorem for dissipative optical solitons. In contrast to area theorems for conservative optical solitons, the energy does not scale inversely with the pulse duration, and in addition there is an upper limit to the energy.
View Article and Find Full Text PDFA new regime of pulse parameters in a normal-dispersion fiber laser is identified. Dissipative solitons exist with remarkably large pulse duration and chirp, along with large pulse energy. A low-repetition-rate oscillator that generates pulses with large and linear chirp can replace the standard oscillator, stretcher, pulse-picker, and preamplifier in a chirped-pulse fiber amplifier.
View Article and Find Full Text PDFThe factors that control the pulse duration in all-normal-dispersion lasers are identified. To minimize the pulse duration the cavity dispersion should be as small as possible. For fixed dispersion increasing pulse energy leads to shorter pulses with more structured spectra.
View Article and Find Full Text PDFWe report experimental evidence of antisymmetric solitons in a mode-locked fiber laser with a strong dispersion map. A dispersion-managed soliton breathes as it traverses the dispersion map, and the antisymmetric dispersion-managed soliton can be considered a tightly bound soliton pair with pi phase difference between the component solitons. The antisymmetric soliton is observed only at particular values of the net cavity dispersion.
View Article and Find Full Text PDFWe demonstrate a mode-locked all-normal-dispersion ytterbium-doped fiber laser constructed with polarization-maintaining fibers. Spectral filtering of a chirped pulse in the cavity, along with a semiconductor saturable absorber, produce self-starting femtosecond mode-locked operation with large normal dispersion. Environmentally stable generation of 2 nJ and 300 fs pulses is achieved.
View Article and Find Full Text PDFA theoretical model that characterizes the physical process responsible for generating ultrashort, high-energy, mode-locked pulses in a normal-dispersion laser cavity with strong spectral filtering is developed. According to this model, two of the critical physical parameters used to achieve optimal performance are the ratio of the filter bandwidth to the gain bandwidth and the placement of the output coupler in the laser cavity. The spectral filtering plays a crucial role in maintaining a short pulse duration with high energy.
View Article and Find Full Text PDFWe report a study of the scaling and limits to pulse energy in an all-normal-dispersion femtosecond fiber laser. Theoretical calculations show that operation at large normal cavity dispersion is possible in the presence of large nonlinear phase shifts, owing to strong pulse shaping by spectral filtering of the chirped pulse in the laser. Stable pulses are possible with energies of tens of nanojoules.
View Article and Find Full Text PDF