Riverine NO and N fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influenced sediment NO and N fluxes across rivers with varying widths (2.8 to 2,000 m) in China.
View Article and Find Full Text PDFUnlabelled: Climate and atmospheric deposition interact with watershed properties to drive dissolved organic carbon (DOC) concentrations in lakes. Because drivers of DOC concentration are inter-related and interact, it is challenging to assign a single dominant driver to changes in lake DOC concentration across spatiotemporal scales. Leveraging forty years of data across sixteen lakes, we used structural equation modeling to show that the impact of climate, as moderated by watershed characteristics, has become more dominant in recent decades, superseding the influence of sulfate deposition that was observed in the 1980s.
View Article and Find Full Text PDFThe forests of central Europe have undergone remarkable transitions in the past 40 years as air quality has improved dramatically. Retrospective analysis of Norway spruce (Picea abies) tree rings in the Czech Republic shows that air pollution (e.g.
View Article and Find Full Text PDFStreams and rivers are important sources of nitrous oxide (N O), a powerful greenhouse gas. Estimating global riverine N O emissions is critical for the assessment of anthropogenic N O emission inventories. The indirect N O emission factor (EF ) model, one of the bottom-up approaches, adopts a fixed EF value to estimate riverine N O emissions based on IPCC methodology.
View Article and Find Full Text PDFWhile tropical cyclone regimes are shifting with climate change, the mechanisms underpinning the resistance (ability to withstand disturbance-induced change) and resilience (capacity to return to pre-disturbance reference) of tropical forest litterfall to cyclones remain largely unexplored pantropically. Single-site studies in Australia and Hawaii suggest that litterfall on low-phosphorus (P) soils is more resistant and less resilient to cyclones. We conducted a meta-analysis to investigate the pantropical importance of total soil P in mediating forest litterfall resistance and resilience to 22 tropical cyclones.
View Article and Find Full Text PDFTropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants).
View Article and Find Full Text PDFMean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates.
View Article and Find Full Text PDFAnthropogenic land use has increased nutrient concentrations and altered dissolved organic matter (DOM) character and its bioavailability. Despite widespread recognition that DOM character and its reactivity can vary temporally, the relative influence of land use and stream order on DOM characteristics is poorly understood across seasons and the entire flow regime. We examined DOM character and 28-day bioavailable dissolved organic carbon (BDOC) across a river network to determine the relative roles of land use and stream order in driving variability in DOM character and bioavailability throughout the year.
View Article and Find Full Text PDFDissolved organic carbon (DOC) and nitrogen (DON) are important energy and nutrient sources for aquatic ecosystems. In many northern temperate, freshwater systems DOC has increased in the past 50 years. Less is known about how changes in DOC may vary across latitudes, and whether changes in DON track those of DOC.
View Article and Find Full Text PDFAnthropogenic increases in nitrogen (N) and phosphorus (P) concentrations can strongly influence the structure and function of ecosystems. Even though lotic ecosystems receive cumulative inputs of nutrients applied to and deposited on land, no comprehensive assessment has quantified nutrient-enrichment effects within streams and rivers. We conducted a meta-analysis of published studies that experimentally increased concentrations of N and/or P in streams and rivers to examine how enrichment alters ecosystem structure (state: primary producer and consumer biomass and abundance) and function (rate: primary production, leaf breakdown rates, metabolism) at multiple trophic levels (primary producer, microbial heterotroph, primary and secondary consumers, and integrated ecosystem).
View Article and Find Full Text PDFAt a "clean air" trade winds site in northeastern Puerto Rico, we found an apparent paradox: atmospheric total mercury (THg) deposition was highest of any site in the USA Mercury Deposition Network, but assimilation into the local food web was quite low. Avian blood THg concentrations (n = 31, from eight species in five foraging guilds) ranged widely from 0.2 to 32 ng g (median of 4.
View Article and Find Full Text PDFMobilization of trace metals from soils to surface waters can impact both human and ecosystem health. This study resamples a water sample archive to explore the spatial pattern of streamwater total concentrations of arsenic, cadmium, copper, lead, and zinc and their associations with biogeochemical controls in northern New England. Road deicing appears to result in elevated trace metal concentrations, as trace metal concentrations are strongly related to sodium concentrations and are most elevated when the sodium: chloride ratio is near 1.
View Article and Find Full Text PDFNutrient inputs to surface waters are particularly varied in urban areas, due to multiple nutrient sources and complex hydrologic pathways. Because of their close proximity to coastal waters, nutrient delivery from many urban areas can have profound impacts on coastal ecology. Relatively little is known about the temporal and spatial variability in stoichiometry of inorganic nutrients such as dissolved silica, nitrogen, and phosphorus (Si, N, and P) and dissolved organic matter in tropical urban environments.
View Article and Find Full Text PDFIn many temperate forested watersheds, hydrologic nitrogen export has declined substantially in recent decades, and many of these watersheds show enduring effects from historic acid deposition. A watershed acid remediation experiment in New Hampshire reversed many of these legacy effects of acid deposition and also increased watershed nitrogen export, suggesting that these two phenomena may be coupled. Here we examine stream nitrate dynamics in this watershed acid remediation experiment for indicators of nitrogen saturation in the terrestrial and aquatic ecosystems.
View Article and Find Full Text PDFRivers are important sites of both nitrogen removal and emission of nitrous oxide (NO), a powerful greenhouse gas. Previous measurements have focused on nitrogen-rich temperate rivers, with cold, low-nitrogen river systems at high-altitude receiving less attention. Here, nitrogen removal rates were estimated by directly measuring dissolved N and NO of the Yellow River in its source region of the Tibetan Plateau, a frigid high-altitude environment.
View Article and Find Full Text PDFGlobal change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems.
View Article and Find Full Text PDFUnderstanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database.
View Article and Find Full Text PDFWater quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment.
View Article and Find Full Text PDFDissolved organic matter (DOM) is a highly diverse mixture of molecules providing one of the largest sources of energy and nutrients to stream ecosystems. Yet the in situ study of DOM is difficult as the molecular complexity of the DOM pool cannot be easily reproduced for experimental purposes. Nutrient additions to streams however, have been shown to repeatedly alter the in situ and ambient DOM pool.
View Article and Find Full Text PDFClimate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows.
View Article and Find Full Text PDF