Publications by authors named "William H Mc Bride"

Type I interferon (IFN-I) and IFN-γ foster antitumor immunity by facilitating T cell responses. Paradoxically, IFNs may promote T cell exhaustion by activating immune checkpoints. The downstream regulators of these disparate responses are incompletely understood.

View Article and Find Full Text PDF

Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5.

View Article and Find Full Text PDF

Background: Resistance to existing therapies is a significant challenge in improving outcomes for glioblastoma (GBM) patients. Metabolic plasticity has emerged as an important contributor to therapy resistance, including radiation therapy (RT). Here, we investigated how GBM cells reprogram their glucose metabolism in response to RT to promote radiation resistance.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (NRF2) is recognized as a master transcription factor that regulates expression of numerous detoxifying and antioxidant cytoprotective genes. In fact, models of NRF2 deficiency indicate roles not only in redox regulation, but also in metabolism, inflammatory/autoimmune disease, cancer, and radioresistancy. Since ionizing radiation (IR) generates reactive oxygen species (ROS), it is not surprising it activates NRF2 pathways.

View Article and Find Full Text PDF

We previously reported several vignettes on types and classes of drugs able to mitigate acute and, in at least one case, late radiation syndromes in mice. Most of these had emerged from high throughput screening (HTS) of bioactive and chemical drug libraries using ionizing radiation-induced lymphocytic apoptosis as a readout. Here we report the full analysis of the HTS screen of libraries with 85,000 small molecule chemicals that identified 220 "hits.

View Article and Find Full Text PDF

Purpose: The clinical efficacy of radiation therapy is mechanistically linked to ionization-induced free radicals that cause cell and tissue injury through direct and indirect mechanisms. Free radical reaction dynamics are influenced by many factors and can be manipulated by static weak magnetic fields (WMF) that perturb singlet-triplet state interconversion. Our study exploits this phenomenon to directly increase ionizing radiation (IR) dose absorption in tumors by combining WMF with radiation therapy as a new and effective method to improve treatment.

View Article and Find Full Text PDF

Acute radiation exposure of the thorax can lead to late serious, and even life-threatening, pulmonary and cardiac damage. Sporadic in nature, late complications tend to be difficult to predict, which prompted this investigation into identifying non-invasive, tissue-specific biomarkers for the early detection of late radiation injury. Levels of circulating microRNA (miRNA) were measured in C3H and C57Bl/6 mice after whole thorax irradiation at doses yielding approximately 70% mortality in 120 or 180 days, respectively (LD70/120 or 180).

View Article and Find Full Text PDF

The purpose of this study was to determine the dynamic contributions of different immune cell subsets to primary and abscopal tumor regression after hypofractionated radiation therapy (hRT) and the impact of anti-PD-1 therapy. A bilateral syngeneic FSA1 fibrosarcoma model was used in immunocompetent C3H mice, with delayed inoculation to mimic primary and microscopic disease. The effect of tumor burden on intratumoral and splenic immune cell content was delineated as a prelude to hRT on macroscopic T1 tumors with 3 fractions of 8 Gy while microscopic T2 tumors were left untreated.

View Article and Find Full Text PDF

Normal tissue responses to ionizing radiation have been a major subject for study since the discovery of X-rays at the end of the 19th century. Shortly thereafter, time-dose relationships were established for some normal tissue endpoints that led to investigations into how the size of dose per fraction and the quality of radiation affected outcome. The assessment of the radiosensitivity of bone marrow stem cells using colony-forming assays by Till and McCulloch prompted the establishment of in situ clonogenic assays for other tissues that added to the radiobiology toolbox.

View Article and Find Full Text PDF

Purpose: Potential acute exposure to ionizing radiation in nuclear or radiological accidents presents complex mass casualty scenarios that demand prompt triage and treatment decisions. Due to delayed symptoms and varied response of radiation victims, there is an urgent need to develop robust biomarkers to assess the extent of injuries in individuals.

Experimental Design: The transcription factor Nrf2 is the master of redox homeostasis and there is transcriptional evidence of Nrf2-dependent antioxidant response activation upon radiation.

View Article and Find Full Text PDF
Article Synopsis
  • In a study on metastatic breast cancer, patients receiving a higher dose of the TGFβ blocking antibody, fresolimumab, during radiotherapy showed better overall survival despite no objective responses to treatment.
  • Analysis of patient blood samples revealed dysfunctional T cells, especially those expressing PD-1, and treatment did not fully resolve this dysfunction.
  • Interestingly, PD-1 blockade in vitro improved TCR signaling specifically in patient PD-1 T cells, suggesting potential therapeutic avenues for treating dysfunctional immune responses in cancer patients.
View Article and Find Full Text PDF

A small group of lipid-conjugated Smac mimetics was synthesized to probe the influence of the position of lipidation on overall anti-cancer activity. Specifically, new compounds were modified with lipid(s) in position 3 and C-terminus. Previously described position 2 lipidated analog M11 was also synthesized.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) remains an incurable disease despite extensive treatment with surgical resection, irradiation, and temozolomide. In line with many other forms of aggressive cancers, GBM is currently under consideration as a target for immunotherapy. However, GBM tends to be nonimmunogenic and exhibits a microenvironment with few or no effector T cells, a relatively low nonsynonymous somatic mutational load, and a low predicted neoantigen burden.

View Article and Find Full Text PDF

Background: Various proinflammatory cytokines can be detected within the melanoma tumor microenvironment. Interleukin 32 (IL32) is produced by T cells, NK cells and monocytes/macrophages, but also by a subset of melanoma cells. We sought to better understand the biology of IL32 in human melanoma.

View Article and Find Full Text PDF

Objective: Exposure to lethal doses of radiation has severe effects on normal tissues. Exposed individuals experience a plethora of symptoms in different organ systems including the gastrointestinal (GI) tract, summarized as Acute Radiation Syndrome (ARS). There are currently no approved drugs for mitigating GI-ARS.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are researching new ways to help people from the harmful effects of radiation, especially after accidents or attacks.
  • They are studying how current treatments work on animals and if they just delay serious problems instead of fixing them.
  • The study shows that mice exposed to high radiation can face health issues for a long time, with some experiencing serious symptoms even after the initial effects.
View Article and Find Full Text PDF

There has been enormous recent progress in understanding how human cells respond to oxidative stress, such as that caused by exposure to ionizing radiation. We have witnessed a significant deciphering of the events that underlie how antioxidant responses counter pro-oxidant damage to key biological targets in all cellular compartments, including the genome and mitochondria. These cytoprotective responses include: 1.

View Article and Find Full Text PDF

This study examined the feasibility, efficacy (abscopal effect), and immune effects of TGFβ blockade during radiotherapy in metastatic breast cancer patients. Prospective randomized trial comparing two doses of TGFβ blocking antibody fresolimumab. Metastatic breast cancer patients with at least three distinct metastatic sites whose tumor had progressed after at least one line of therapy were randomized to receive 1 or 10 mg/kg of fresolimumab, every 3 weeks for five cycles, with focal radiotherapy to a metastatic site at week 1 (three doses of 7.

View Article and Find Full Text PDF

Environmental insults are often detected by multiple sensors that activate diverse signaling pathways and transcriptional regulators, leading to a tailored transcriptional output. To understand how a tailored response is coordinated, we examined the inflammatory response elicited in mouse macrophages by ionizing radiation (IR). RNA-sequencing studies revealed that most radiation-induced genes were strongly dependent on only one of a small number of sensors and signaling pathways, notably the DNA damage-induced kinase ATM, which regulated many IR-response genes, including interferon response genes, via an atypical IRF1-dependent, STING-independent mechanism.

View Article and Find Full Text PDF

Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis.

View Article and Find Full Text PDF

The advent and success of immune checkpoint inhibitors (ICIs) in cancer treatment has broadened the spectrum of tumours that might be considered "immunogenic" and susceptible to immunotherapeutic (IT) intervention. Not all cancer types are sensitive, and not all patients with any given type respond. Combination treatment of ICIs with an established cytotoxic modality such as radiation therapy (RT) is a logical step towards improvement.

View Article and Find Full Text PDF

Injury to the barrier tissue initiates a rapid distribution of myeloid immune cells from bone marrow, which guide sound wound healing. Bisphosphonates, a widely used anti-bone resorptive drug with minimal systemic side effects, have been linked to an abnormal wound healing in the oral barrier tissue leading to, in some cases, osteonecrosis of the jaw (ONJ). Here we report that the development of ONJ may involve abnormal phenotypic plasticity of Ly6G+/Gr1+ myeloid cells in the oral barrier tissue undergoing tooth extraction wound healing.

View Article and Find Full Text PDF