Publications by authors named "William H Curry"

Quantification of biomechanical tolerance is necessary for injury prediction and protection of vehicular occupants. This study experimentally quantified lumbar spine axial tolerance during accelerative environments simulating a variety of military and civilian scenarios. Intact human lumbar spines (T12-L5) were dynamically loaded using a custom-built drop tower.

View Article and Find Full Text PDF

Lumbar endplate fractures were investigated in different experimental scenarios, however the biomechanical effect of segmental alignment was not outlined. The objectives of this study were to quantify effects of spinal orientation on lumbar spine injuries during single-cycle compressive loads and understand lumbar spine endplate injury tolerance. Twenty lumbar motion segments were compressed to failure.

View Article and Find Full Text PDF

Internal intervertebral disc disruption is involved in the onset of a wide range of spinal dysfunction, ultimately affecting not only the disc itself but the surrounding osseous and neural structures as well. The ability of disc to withstand and effectively distribute axial load is dependent upon whether peripherally located annular fibers provide the support necessary to contain and corral the pressure sensitive nucleus. Any alteration in the structures immediate to the nucleus jeopardize this ability.

View Article and Find Full Text PDF

Lumbar spine endplate fracture is not easily detectible using medical imaging, but can lead to pain symptoms. Understanding endplate fracture mechanics can lead to more informed clinical diagnosis and more appropriate safety enhancements for civilian and military vehicles. Lumbar motion segments obtained from PMHS were prepared using two methods.

View Article and Find Full Text PDF

This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990-1998 update and 2005.

View Article and Find Full Text PDF