Introduction: α7-nicotinic acetylcholine receptor (α7-nAChR) is one of the major neuronal nAChR subtypes. α7-nAChR is involved in variety of neuronal processes and disorders including schizophrenia and Alzheimer's disease. A number of α7-nAChR PET radioligands have been developed, but a quality radiotracer remains to be discovered.
View Article and Find Full Text PDFThe well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.
View Article and Find Full Text PDFA series of diazabicyclo[3.3.0]octane substituted pyridines and pyrazines was synthesized and characterized at the α4β2 neuronal nicotinic acetylcholine receptor (nAChR).
View Article and Find Full Text PDFImmunological responses to protect against excessive inflammation can be regulated by the central nervous system through the cholinergic anti-inflammatory pathway wherein acetylcholine released from vagus nerves can inhibit inflammatory cytokines. Although a role for the α7 nicotinic acetylcholine receptor (α7 nAChR) in mediating this pathway has been suggested, pharmacological modulation of the pathway by selective agonists remains to be further elucidated. In this study, the role of α7 nAChRs in the regulation of TNF-α release was investigated using high affinity and selective α7 nAChR agonists in mouse peritoneal macrophage and human whole blood in vitro, and in mouse serum in vivo.
View Article and Find Full Text PDFCarbamyl glucuronidation is an increasingly well-recognized route of metabolism for secondary amine drugs. Proper characterization of these metabolites requires the synthesis of authentic standards. O-protected glucuronyl p-nitrophenyl carbonates can be prepared with high selectivity for the β-configuration at the anomeric center and efficiently transfer the β-glucuronylcarbonyl group to secondary amines, constituting an effective and versatile method for preparation of these metabolites.
View Article and Find Full Text PDFEnhancement of alpha7 nicotinic acetylcholine receptor (nAChR) activity is considered a therapeutic approach for ameliorating cognitive deficits present in Alzheimer's disease and schizophrenia. In this study, we describe the in vitro profile of a novel selective alpha7 nAChR agonist, 5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole (ABT-107). ABT-107 displayed high affinity binding to alpha7 nAChRs [rat or human cortex, [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.
View Article and Find Full Text PDFWe previously reported that alpha7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimer's disease (AD) pathology. In the present studies, the selective and potent alpha7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.
View Article and Find Full Text PDFBiaryl substituted 2,5-diazabicyclo[2.2.1]heptanes have been synthesized and tested for their affinity toward alpha7 neuronal nicotinic receptors (NNRs).
View Article and Find Full Text PDFA series of alpha7 neuronal nicotinic acetylcholine receptor ligands were designed based on a structural combination of a potent, but non-selective ligand, epibatidine, with a selective lead structure, 2. Three series of compounds in which aryl moieties were attached via a linker to different positions on the core structure were studied. A potent and functionally efficacious analog, (3aR,6aS)-2-(6-phenylpyridazin-3-yl)-5-(pyridin-3-ylmethyl)octahydropyrrolo[3,4-c]pyrrole (3a), was identified.
View Article and Find Full Text PDFBackground And Purpose: Several agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) have been developed for treatment of cognitive deficits. However, agonist efficacy in vivo is difficult to reconcile with rapid alpha7 nAChR desensitization in vitro; and furthermore, the correlation between in vitro receptor efficacy and in vivo behavioural efficacy is not well delineated. The possibility that agonists of this receptor actually function in vivo as inhibitors via desensitization has not been finally resolved.
View Article and Find Full Text PDFA series of 5-(pyridine-3-yl)octahydropyrrolo[3,4-c]pyrroles have been prepared that exhibit high affinity to alpha4beta2 and/or alpha7 nicotinic acetylcholine receptors (nAChRs). Simple substitution patterns have been identified that allow construction of ligands that are highly selective for either nAChR subtype. The effects of substitution on subtype selectivity provide some insight into the differences in the ligand binding domains of the alpha4beta2 and alpha7 receptors, especially in regions removed from the cation binding pocket.
View Article and Find Full Text PDFJ Med Chem
May 2009
The discovery of a series of pyrrole-sulfonamides as positive allosteric modulators (PAM) of alpha7 nAChRs is described. Optimization of this series led to the identification of 19 (A-867744), a novel type II PAM with good potency and selectivity. Compound 19 showed acceptable pharmacokinetic profile across species and brain levels sufficient to modulate alpha7 nAChRs.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
July 2009
Targeting alpha7 neuronal acetylcholine receptors (nAChRs) with selective agonists and positive allosteric modulators (PAMs) is considered a therapeutic approach for managing cognitive deficits in schizophrenia and Alzheimer's disease. In this study, we describe a novel type II alpha7 PAM, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), that exhibits a unique pharmacological profile. In oocytes expressing alpha7 nAChRs, A-867744 potentiated acetylcholine (ACh)-evoked currents, with an EC(50) value of approximately 1 microM.
View Article and Find Full Text PDFSeveral N-pyridin-3-yl spirobicyclic diamines, designed as conformationally restricted analogs of tebanicline (ABT-594), were synthesized as novel ligands for nicotinic acetylcholine receptors (nAChR). The spirocyclic compounds exhibited weaker binding affinity, than other constrained analogs in accord with a pharmacophore model. Nevertheless, some (1a, 1b) possessed (partial) agonist potencies comparable to nicotine at the alpha4beta2 subtype, but with greatly improved selectivity relative to the alpha3beta4* nAChR.
View Article and Find Full Text PDFAmong the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS).
View Article and Find Full Text PDFA series of novel, potent neuronal nicotinic acetylcholine receptor (nAChR) ligands derived from 3,6-diazabicyclo[3.2.0]heptane have been synthesized and evaluated for binding affinity and agonist activity at the alpha4beta2 nAChR subtype.
View Article and Find Full Text PDFThe alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.
View Article and Find Full Text PDF5-[(1R,5S)-3,6-Diazabicyclo[3.2.0]heptan-6-yl]nicotinonitrile (A-366833) is a novel nicotinic acetylcholine receptor (nAChR) ligand that binds to the agonist-binding site ([3H]-cytisine) with Ki value of 3.
View Article and Find Full Text PDFA series of exceptionally potent agonists at neuronal nicotinic acetylcholine receptors (nAChRs) has been investigated. Several N-(3-pyridinyl) derivatives of bridged bicyclic diamines exhibit double-digit-picomolar binding affinities for the alpha 4 beta 2 subtype, placing them with epibatidine among the most potent nAChR ligands described to date. Structure-activity studies have revealed that substitutions, particularly hydrophilic groups in the pyridine 5-position, differentially modulate the agonist activity at ganglionic vs central nAChR subtypes, so that improved subtype selectivity can be demonstrated in vitro.
View Article and Find Full Text PDFA series of potent neuronal nicotinic acetylcholine receptor (nAChR) ligands based on a 3,8-diazabicyclo[4.2.0]octane core have been synthesized and evaluated for affinity and agonist efficacy at the human high affinity nicotine recognition site (halpha4beta2) and in a rat model of persistent nociceptive pain (formalin model).
View Article and Find Full Text PDFGabapentin and pregabalin have been demonstrated, both in animal pain models and clinically, to be effective analgesics particularly for the treatment of neuropathic pain. The precise mechanism of action for these two drugs is unknown, but they are generally believed to function via initially binding to the alpha2delta subunit of voltage-gated Ca2+ channels. In this study, we used a pharmacological approach to test the hypothesis whether high affinity interactions with the alpha2delta subunit alone could lead to attenuation of neuropathic pain in rats.
View Article and Find Full Text PDFImaging the living brain and the distribution of the ligand gated channels that participate in the neurotransmission is one of the challenges that is hoped to bring new insights for the treatment of neurological diseases. Herein, we probed a new nicotinic derivative, A-186253 as a potential molecule to discriminate with high resolution the different neuronal nicotinic receptor subtypes that are expressed in distinct brain areas. Binding with a high affinity of 440 pM at the major brain alpha4beta2 receptor subtype and presenting an excellent safety margin, properties of the A-186253 were thoroughly evaluated.
View Article and Find Full Text PDFJ Med Chem
June 2004
Structure-activity studies were performed on the alpha(1A)-adrenoceptor (AR) selective agonist N-[5-(1H-imidazol-4-yl)-5,6,7,8-tetrahydro-1-naphthalenyl]methanesulfonamide (4). Compounds were evaluated for binding activity at the alpha(1A), alpha(1b), alpha(1d), alpha(2a), and alpha(2B) subtypes. Functional activity in tissues containing the alpha(1A) (rabbit urethra), alpha(1B) (rat spleen), alpha(1D) (rat aorta), and alpha(2A) (rat prostatic vas deferens) was also evaluated.
View Article and Find Full Text PDFIn the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity.
View Article and Find Full Text PDF[reaction: see text] Amination of 5-bromo-2-chloropyridine (1a) catalyzed by a palladium-Xantphos complex predominately gives 5-amino-2-chloropyridine product 3a in 96% isolated yield and excellent chemoselectivity (3a/4a = 97:3). Amination of 2,5-dibromopyridine (11) under the same conditions exclusively affords 2-amino-5-bromopyridine 4a.
View Article and Find Full Text PDF