Publications by authors named "William Groves"

Background And Objectives: The caries preventive effects of different laser wavelengths have been studied in the laboratory as well as in pilot clinical trials. The objective of this in vitro study was to evaluate whether irradiation with a new 9.3 μm microsecond short-pulsed CO2 -laser could enhance enamel caries resistance with and without additional fluoride applications.

View Article and Find Full Text PDF

The objective of this study was to assess the potential for using artificial neural networks (ANN) to predict inspired minute ventilation (V(I)) during exercise activities. Six physiological/kinematic measurements obtained from a portable ambulatory monitoring system, along with individual's anthropometric and demographic characteristics, were employed as input variables to develop and optimize the ANN configuration with respect to reference values simultaneously measured using a pneumotachograph (PT). The generalization ability of the resulting two-hidden-layer ANN model was compared with a linear predictive model developed through partial least squares (PLS) regression, as well as other V(I) predictive models proposed in the literature.

View Article and Find Full Text PDF

Recently, physiologic sampling pumps (PSPs), which can adjust their sampling rates in proportion to wearers' minute ventilation (V[combining dot above](E)), have been proposed to better estimate exposure to airborne contaminants in the workplace. A laboratory evaluation was conducted to compare the performance of a new PSP with a traditional sampling pump (TSP) in an exposure chamber. Fifteen subjects (aged 19-36 years) performed two replicate sessions of step-tests for correlated and uncorrelated exposure scenarios on four separate days.

View Article and Find Full Text PDF

The merits of using physiologic sampling pumps (PSPs) instead of using constant-flow sampling pumps, i.e., "traditional sampling pumps" (TSPs), are discussed.

View Article and Find Full Text PDF

A study was conducted to evaluate a portable respiratory inductive plethysmograph (RIP) as a means to estimate minute ventilation (V(E)) for use in controlling the flow rate of a physiologic sampling pump (PSP). Specific aims were to: (1) evaluate the ability of the portable RIP system to measure V(E) using a direct (individual) fixed-volume calibration method (Direct RIP model), (2) develop and evaluate the performance of indirect (group) regression models for V(E) prediction using output data from the portable RIP and subject demographic characteristics (Indirect RIP model), and (3) compare V(E) estimates from indirect and direct portable RIP calibration with indirect estimation models published previously. Nine subjects (19-44 years) were divided into calibration (n = 6) and test (n = 3) datasets and performed step-tests on three different days while wearing the portable RIP and breathing through a pneumotachometer (reference).

View Article and Find Full Text PDF

The paper presents the results of research aimed at developing a risk assessment process that can be used to more thoroughly characterise risks associated with loader- and dozer-related fatal incidents in US mining. The assessment is based on historical data obtained from the US Mine Safety and Health Administration investigation reports, which includes 77 fatal incidents that occurred from 1995 to 2006. The Preliminary Hazard Assessment method is used in identifying and quantifying risks.

View Article and Find Full Text PDF

This article describes the laboratory and field performance evaluation of a small prototype instrument employing an array of six polymer-coated surface acoustic wave (SAW) sensors and a thermal desorption preconcentration unit for rapid analysis of perchloroethylene in breath. Laboratory calibrations were performed using breath samples spiked with perchloroethylene to prepare calibration standards spanning a concentration range of 0.1-10 ppm.

View Article and Find Full Text PDF

A fluorometric method developed for measuring low concentrations of ammonium in marine and freshwater ecosystems was adapted for the analysis of ammonia in ambient air. The modified method entails collection of samples on an acid-treated solid adsorbent followed by analysis using a fluorometer. Optimal results were obtained using a commercially available sorbent tube containing 100 mg of acid-treated silica gel for sample collection, and an analytical protocol consisting of sample desorption in DI water, addition of orthopthaldialdehyde (OPA) working reagent, and room temperature incubation.

View Article and Find Full Text PDF

A prototype sampling system for measuring respirator workplace protection factors (WPFs) was developed. Methods for measuring the concentration of contaminants inside respirators have previously been described; however, these studies have typically involved continuous sampling of aerosols. Our work focuses on developing an intermittent sampling system designed to measure the concentration of gases and vapors during inspiration.

View Article and Find Full Text PDF