Many biomedical devices are powered and controlled by electrical components. These electronics add to the cost of a device (possibly making the device too expensive for use in resource-limited or point-of-care settings) and can also render the device unsuitable for use in some environments (for example, high-humidity areas such as incubators where condensation could cause electrical short circuits, ovens where electronic components may overheat, or explosive or flammable environments where electric sparks could cause serious accidents). In this work, we show that pneumatic logic can be used to power and control biomedical devices without the need for electricity or electric components.
View Article and Find Full Text PDFMedium viscosity strongly affects the dynamics of solvated species and can drastically alter the deactivation pathways of their excited states. This study demonstrates the utility of poly(dimethylsiloxane) (PDMS) as a room-temperature solid-state medium for optical spectroscopy. As a thermoset elastic polymer, PDMS is transparent in the near ultraviolet, visible, and near infrared spectral regions.
View Article and Find Full Text PDFGraft-transmissible, phloem-limited pathogens of citrus such as viruses, viroids, and bacteria are responsible for devastating epidemics and serious economic losses worldwide. For example, the citrus tristeza virus killed over 100 million citrus trees globally, while "Candidatus Liberibacter asiaticus" has cost Florida $9 billion. The use of pathogen-tested citrus budwood for tree propagation is key for the management of such pathogens.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
July 2023
Microfluidic capture chips are useful for preparing or analyzing a wide range of different chemical, biological, and medical samples. A typical microfluidic capture chip contains features that capture certain targets (i.e.
View Article and Find Full Text PDFCounterfeit or substandard medicines adversely affect the health of millions of people and cost an estimated $200 billion USD annually. Their burden is greatest in developing countries, where the World Health Organization estimates that one in ten medical products are fake. In this work, I describe a simple addition to the existing drug manufacturing process that imparts an edible universally unique physical identifier to each pill, tablet, capsule, caplet, etc.
View Article and Find Full Text PDFPaper microfluidic or lateral flow devices have found many applications, especially in medical diagnostics. Their low cost and ease of use makes them particularly valuable in resource-limited and point-of-care applications. However, the process of developing new paper microfluidic devices is slowed by the need to find optimal values for their various design parameters, which determine the overall size and fluid volume requirements of the device.
View Article and Find Full Text PDFPneumatically-actuated soft robots have advantages over traditional rigid robots in many applications. In particular, their flexible bodies and gentle air-powered movements make them more suitable for use around humans and other objects that could be injured or damaged by traditional robots. However, existing systems for controlling soft robots currently require dedicated electromechanical hardware (usually solenoid valves) to maintain the actuation state (expanded or contracted) of each independent actuator.
View Article and Find Full Text PDFMany solid-dose oral drug products are engineered to release their active ingredients into the body at a certain rate. Techniques for measuring the dissolution or degradation of a drug product in vitro play a crucial role in predicting how a drug product will perform in vivo. However, existing techniques are often labor-intensive, time-consuming, irreproducible, require specialized analytical equipment, and provide only "snapshots" of drug dissolution every few minutes.
View Article and Find Full Text PDFWhile safe chemical storage and disposal are simple in principle-users should read safety specifications and place chemicals in appropriate cabinets or collection points-high-profile incidents involving improper storage and disposal of chemicals continue to occur. This paper introduces ChemStor, an open-source, automated computational system that can guarantee (mathematically verify a system is correct with respect to its specification), with regard to prescribed constraints, safe storage and disposal of chemicals used in academic, industrial, and domestic settings. ChemStor borrows concepts from formal methods-a branch of computer science capable of mathematically proving a specification or software is correct-to safely store or dispose of chemicals.
View Article and Find Full Text PDFThe ability to thoroughly mix two fluids is a fundamental need in microfluidics. While a variety of different microfluidic mixers have been designed by researchers, it remains unknown which (if any) of these mixers are optimal (that is, which designs provide the most thorough mixing with the smallest possible fluidic resistance across the mixer). In this work, we automatically designed and rationally optimized a microfluidic mixer.
View Article and Find Full Text PDFPaper microfluidic devices (including lateral flow assays) offer an excellent combination of utility and low cost. Many paper microfluidic devices are fabricated using the Xerox ColorQube line of commercial wax-based color printers; the wax ink serves as a hydrophobic barrier to fluid flow. These printers are capable of depositing four different colors of ink, cyan (C), magenta (M), yellow (Y), and black (K), plus 11 combinations of these colors (CM, CY, CK, MY, MK, YK, CMY, CMK, CYK, MYK, and CMYK), although most researchers use only black ink to print paper microfluidic devices.
View Article and Find Full Text PDFThe modern tools of chemistry excel at identifying a sample, but the cost, size, complexity, and power consumption of these instruments often preclude their use in resource-limited settings. In this work, we demonstrate a simple and low-cost method for identifying a sample based on visualizing how the sample changes over space and time in response to a perturbation. Different types of perturbations could be used, and in this proof-of-concept we use a dynamic temperature gradient that rapidly cools different parts of the sample at different rates.
View Article and Find Full Text PDFThe frequencies of notes made by a musical instrument are determined by the physical properties of the instrument. Consequently, by measuring the frequency of a note, one can infer information about the instrument's physical properties. In this work, we show that by modifying a musical instrument to contain a sample and analyzing the instrument's pitch, we can make precision measurements of the physical properties of the sample.
View Article and Find Full Text PDFMeasuring the temperature of a sample is a fundamental need in many biological and chemical processes. When the volume of the sample is on the microliter or nanoliter scale (e.g.
View Article and Find Full Text PDFMicrofluidics researchers are increasingly using computer simulation in many different aspects of their research. However, these simulations are often computationally intensive: simulating the behavior of a simple microfluidic chip can take hours to complete on typical computing hardware, and even powerful workstations can lack the computational capabilities needed to simulate more complex chips. This slows the development of new microfluidic chips for new applications.
View Article and Find Full Text PDFSorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties.
View Article and Find Full Text PDFComputer simulation plays a growing role in the design of microfluidic chips. However, the particle tracers in some existing commercial computational fluid dynamics software are not well suited for accurately simulating the trajectories of particles such as cells, microbeads, and droplets in microfluidic systems. To address this issue, we present a microfluidics-optimized particle simulation algorithm (MOPSA) that simulates the trajectories of cells, droplets, and other particles in microfluidic chips with more lifelike results than particle tracers in existing commercial software.
View Article and Find Full Text PDFMeasurements of an object's fundamental physical properties like mass, volume, and density can offer valuable insights into the composition and state of the object. However, many important biological samples reside in a liquid environment where it is difficult to accurately measure their physical properties. We show that by using a simple piece of glass tubing and some inexpensive off-the-shelf electronics, we can create a sensor that can measure the mass, volume, and density of microgram-sized biological samples in their native liquid environment.
View Article and Find Full Text PDFIn this work we created functional microfluidic chips without actually designing them. We accomplished this by first generating a library of thousands of different random microfluidic chip designs, then simulating the behavior of each design on a computer using automated finite element analysis. The simulation results were then saved to a database which a user can query via to find chip designs suitable for a specific task.
View Article and Find Full Text PDFThe development of new biological and chemical instruments for research and diagnostic applications is often slowed by the cost, specialization, and custom nature of these instruments. New instruments are built from components that are drawn from a host of different disciplines and not designed to integrate together, and once built, an instrument typically performs a limited number of tasks and cannot be easily adapted for new applications. Consequently, the process of inventing new instruments is very inefficient, especially for researchers or clinicians in resource-limited settings.
View Article and Find Full Text PDFMost microfluidic chips utilize off-chip hardware (syringe pumps, computer-controlled solenoid valves, pressure regulators, etc.) to control fluid flow on-chip. This expensive, bulky, and power-consuming hardware severely limits the utility of microfluidic instruments in resource-limited or point-of-care contexts, where the cost, size, and power consumption of the instrument must be limited.
View Article and Find Full Text PDFBackground: Approximately 30% of patients with metastatic (stage M) neuroblastoma present with periorbital ecchymosis from orbital osseous disease. Though locoregional disease is staged by imaging, the prognostic significance of metastatic site in stage M disease is unknown. We hypothesize that, compared to nonorbital metastasis, orbital metastasis is associated with decreased survival in patients with stage M neuroblastoma, and that periorbital ecchymosis reflects location and extent of orbital disease.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2016
Microfluidic diagnostics for use in the developing world face a number of unique challenges. Doctors and nurses in developing countries are best suited to addresses these challenges, but they lack the resources and training needed to develop their own microfluidic diagnostics. To address this need, we are developing a system of Multifluidic Evolutionary Components or MECs, "building blocks" that can be snapped together by healthcare providers in resource-limited settings to build custom diagnostic instruments.
View Article and Find Full Text PDFCell size, measured as either volume or mass, is a fundamental indicator of cell state. Far more tightly regulated than size is density, the ratio between mass and volume, which can be used to distinguish between cell populations even when volume and mass appear to remain constant. Here we expand upon a previous method for measuring cell density involving a suspended microchannel resonator (SMR).
View Article and Find Full Text PDFWe present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone.
View Article and Find Full Text PDF