Publications by authors named "William Graves"

Aphasia, a communication disorder caused primarily by left-hemisphere stroke, affects millions of individuals worldwide, with up to 70% experiencing significant reading impairments. These deficits negatively impact independence and quality of life, highlighting the need for effective treatments that target the cognitive and neural processes essential to reading recovery. This Randomized Clinical Trial (RCT) aims to test the efficacy of a combined intervention incorporating aerobic exercise training (AET) and phono-motor treatment (PMT) to enhance reading recovery in individuals with post-stroke aphasia.

View Article and Find Full Text PDF

Purpose: Acquired reading deficits, or alexia, affect a significant proportion of individuals with aphasia. We sought to improve treatment for alexia by targeting specific cognitive information-processing components critical to reading (i.e.

View Article and Find Full Text PDF

To determine how language is implemented in the brain, it is important to know which brain areas are primarily engaged in language processing and which are not. Existing protocols for localizing language are typically univariate, treating each small unit of brain volume as independent. One prominent example that focuses on the overall language network in functional magnetic resonance imaging (fMRI) uses a contrast between neural responses to sentences and sets of pseudowords (pronounceable nonwords).

View Article and Find Full Text PDF

Previous research has demonstrated behavioral and neural differences associated with experiencing adversity. However, adversity is unlikely to be a monolithic construct, and we expect that examining effects of more specific components such as exposure to violence in the home community will yield more concretely interpretable results. Here we account for effects of low socioeconomic status (SES) to examine the specific effects of exposure to violence on functional connectivity between brain areas known to be related to emotion regulation and working memory.

View Article and Find Full Text PDF

The angular and supramarginal gyri (AG and SMG) together constitute the inferior parietal lobule (IPL) and have been associated with cognitive functions that support reading. How those functions are distributed across the AG and SMG is a matter of debate, the resolution of which is hampered by inconsistencies across stereotactic atlases provided by the major brain image analysis software packages. Schematic results from automated meta-analyses suggest primarily semantic (word meaning) processing in the left AG, with more spatial overlap among phonological (auditory word form), orthographic (visual word form), and semantic processing in the left SMG.

View Article and Find Full Text PDF

Individuals on the autism spectrum often have trouble with social and figurative language. As social language is often figurative, it can be challenging to disentangle the cognitive and neural sources of these difficulties. Neural systems for social cognition and language comprehension overlap in areas involved in retrieving linguistic meaning (semantics), such as the anterior temporal lobe (ATL), ventro-medial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), and posterior middle temporal gyrus (pMTG).

View Article and Find Full Text PDF

The objective of this study was to characterize circulating Anti-Müllerian Hormone (AMH) concentrations in a population of Holstein heifers and examine the impact that life events and stage of life have on those concentrations. Virgin, Holstein heifers (n = 105) 13 ± 0.8 months old were heat detected using tail-chalk, bred via artificial insemination and pregnancy checked 32+ days later.

View Article and Find Full Text PDF

Purpose: Demonstrate realistic simulation of grating-based x-ray phase-contrast imaging (GB-XPCI) using wave optics and the four-dimensional Mouse Whole Body (MOBY) phantom defined with non-uniform rational B-splines (NURBS).

Methods: We use a full-wave approach, which uses wave optics for x-ray wave propagation from the source to the detector. This forward imaging model can be directly applied to NURBS-defined numerical phantoms such as MOBY.

View Article and Find Full Text PDF

Determining how the cognitive components of reading - orthographic, phonological, and semantic representations - are instantiated in the brain has been a longstanding goal of psychology and human cognitive neuroscience. The two most prominent computational models of reading instantiate different cognitive processes, implying different neural processes. Artificial neural network (ANN) models of reading posit non-symbolic, distributed representations.

View Article and Find Full Text PDF

Automatic identification of brain lesions from magnetic resonance imaging (MRI) scans of stroke survivors would be a useful aid in patient diagnosis and treatment planning. It would also greatly facilitate the study of brain-behavior relationships by eliminating the laborious step of having a human expert manually segment the lesion on each brain scan. We propose a multi-modal multi-path convolutional neural network system for automating stroke lesion segmentation.

View Article and Find Full Text PDF

There has been an enduring fascination with the possibility of gender differences in the brain basis of language, yet the evidence has been largely equivocal. Evidence does exist, however, for women being at greater risk than men for developing psychomotor slowing and even Alzheimer disease with advancing age, although this may in part at least be due to women living longer. We examined whether gender, age, or their interaction influenced language-related or more general processes in reading.

View Article and Find Full Text PDF

Better understanding of cerebral blood flow (CBF) perfusion in stroke recovery can help inform decisions about optimal timing and targets of restorative treatments. In this study, we examined the relationship between cerebral perfusion and recovery from stroke-induced reading deficits. Left stroke patients were tested with a noninvasive CBF measure (arterial spin labeling) <5 weeks post-stroke, and a subset had follow up testing >3 months post-stroke.

View Article and Find Full Text PDF

The objective of this study was to examine the impact of a bovine respiratory disease complex (BRDC) vaccine with a temperature-sensitive modified live vaccine (MLV) infectious bovine rhinotracheitis (IBR) component on oestrous cycle parameters and the follicular pool. Twenty-four Holstein heifers (12.4 ± 0.

View Article and Find Full Text PDF

We demonstrate a fast, flexible, and accurate paraxial wave propagation model to serve as a forward model for propagation-based X-ray phase contrast imaging (XPCI) in parallel-beam or cone-beam geometry. This model incorporates geometric cone-beam effects into the multi-slice beam propagation method. It enables rapid prototyping and is well suited to serve as a forward model for propagation-based X-ray phase contrast tomographic reconstructions.

View Article and Find Full Text PDF

Introduction: The advent of autonomous automobiles raises new challenges for maintaining passenger safety and comfort. The challenge addressed here is how to predict and mitigate motion sickness when passengers read in a moving vehicle.

Methods: We utilized a car equipped with a commercial active suspension system developed for attenuating the transmission of road surface fluctuations to passengers.

View Article and Find Full Text PDF

Studies of the neural substrates of semantic (word meaning) processing have typically focused on semantic manipulations, with less consideration for potential differences in difficulty across conditions. While the idea that particular brain regions can support multiple functions is widely accepted, studies of specific cognitive domains rarely test for co-location with other functions. Here we start with standard univariate analyses comparing words to meaningless nonwords, replicating our recent finding that this contrast can activate task-positive regions for words, and default-mode regions in the putative semantic network for nonwords, pointing to difficulty effects.

View Article and Find Full Text PDF

Understanding the neural basis of recovery from stroke is a major research goal. Many functional neuroimaging studies have identified changes in brain activity in people with aphasia, but it is unclear whether these changes truly support successful performance or merely reflect increased task difficulty. We addressed this problem by examining differences in brain activity associated with correct and incorrect responses on an overt reading task.

View Article and Find Full Text PDF

Although much is known about the cognitive and neural basis of establishing letter-sound mappings in learning word forms, relatively little is known about what makes for the most effective feedback during this process. We sought to determine the neural basis by which elaborative feedback (EF), which contains both reward-related and content-specific information, may be more helpful than feedback containing only one kind of information (simple positive feedback, PF) or the other (content feedback, CF) in learning orthography-phonology (spelling-sound) mappings for novel letter strings. Compared to CF, EF activated the ventromedial prefrontal cortex, implicated in reward processing.

View Article and Find Full Text PDF

X-ray phase-contrast imaging (XPCI) overcomes the problem of low contrast between different soft tissues achieved in conventional x-ray imaging by introducing x-ray phase as an additional contrast mechanism. This work describes a compact x-ray light source (CXLS) and compares, via simulations, the high quality XPCI results that can be produced from this source to those produced using a microfocus x-ray source. The simulation framework is first validated using an image acquired with a microfocus-source, propagation-based XPCI (PB-XPCI) system.

View Article and Find Full Text PDF

The distinction between letter strings that form words and those that look and sound plausible but are not meaningful is a basic one. Decades of functional neuroimaging experiments have used this distinction to isolate the neural basis of lexical (word level) semantics, associated with areas such as the middle temporal, angular, and posterior cingulate gyri that overlap the default mode network. In two fMRI experiments, a different set of findings emerged when word stimuli were used that were less familiar (measured by word frequency) than those typically used.

View Article and Find Full Text PDF

Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval.

View Article and Find Full Text PDF

According to cognitive models of reading, words are processed by interacting orthographic (spelling), phonological (sound), and semantic (meaning) information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here, we report on one such study.

View Article and Find Full Text PDF

Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods.

View Article and Find Full Text PDF

Are there multiple ways to be a skilled reader? To address this longstanding, unresolved question, we hypothesized that individual variability in using semantic information in reading aloud would be associated with neuroanatomical variation in pathways linking semantics and phonology. Left-hemisphere regions of interest for diffusion tensor imaging analysis were defined based on fMRI results, including two regions linked with semantic processing - angular gyrus (AG) and inferior temporal sulcus (ITS) - and two linked with phonological processing - posterior superior temporal gyrus (pSTG) and posterior middle temporal gyrus (pMTG). Effects of imageability (a semantic measure) on response times varied widely among individuals and covaried with the volume of pathways through the ITS and pMTG, and through AG and pSTG, partially overlapping the inferior longitudinal fasciculus and the posterior branch of the arcuate fasciculus.

View Article and Find Full Text PDF