ACS Appl Mater Interfaces
October 2024
In medical infections such as blood sepsis and in food quality control, fast and accurate bacteria analysis is required. Using magnetic nanoparticles (MNPs) for bacterial capture and concentration is very promising for rapid analysis. When MNPs are functionalized with the proper surface chemistry, they have the ability to bind to bacteria and aid in the removal and concentration of bacteria from a sample for further analysis.
View Article and Find Full Text PDFTargeted cancer therapy (TCT) is gaining increased interest because it reduces the risks of adverse side effects by specifically treating tumor cells. TCT testing has traditionally been performed using two-dimensional (2D) cell culture and animal studies. Organ-on-a-chip (OoC) platforms have been developed to recapitulate cancer in vitro, as cancer-on-a-chip (CoC), and used for chemotherapeutics development and testing.
View Article and Find Full Text PDFImproving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors.
View Article and Find Full Text PDFAchieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound.
View Article and Find Full Text PDFThree-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context.
View Article and Find Full Text PDFThe spinning disk technology has previously been utilized to isolate bacterial components from blood in hours instead of days. We hypothesized that this platform could be applied as an alternative approach to isolating plasma RNA from a whole blood sample. We consequently tested the efficacy of the spinning disk technology to extract plasma from whole blood upstream of RNA isolation and analysis.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2023
Cancer is one of the leading causes of death worldwide. Because each person's cancer may be unique, diagnosing and treating cancer is challenging. Advances in nanomedicine have made it possible to detect tumors and quickly investigate tumor cells at a cellular level in contrast to prior diagnostic techniques.
View Article and Find Full Text PDFGlioblastoma (GBM) is a highly aggressive brain tumor, and its treatment is further complicated by the high selectivity of the blood-brain barrier (BBB). The scientific community is urgently seeking innovative and effective therapeutic solutions. Liposomes are a promising new tool that has shown potential in addressing the limitations of chemotherapy, such as poor bioavailability and toxicity to healthy cells.
View Article and Find Full Text PDFDue to their biocompatibility, non-toxicity, and surface-conjugation capabilities, liposomes are effective nanocarriers that can encapsulate chemotherapeutic drugs and facilitate targeted delivery across the blood-brain barrier (BBB). Additionally, strategies have been explored to synthesize liposomes that respond to internal and/or external stimuli to release their payload controllably. Although research into liposomes for brain cancer treatment is still in its infancy, these systems have great potential to fundamentally change the drug delivery landscape.
View Article and Find Full Text PDFMembrane fouling is a major hurdle to effective pressure-driven membrane processes, such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Fouling refers to the accumulation of particles, organic and inorganic matter, and microbial cells on the membrane's external and internal surface, which reduces the permeate flux and increases the needed transmembrane pressure. Various factors affect membrane fouling, including feed water quality, membrane characteristics, operating conditions, and cleaning protocols.
View Article and Find Full Text PDFMicrofluidic devices (MFDs) printed in 3-D geometry using digital light projection to polymerize monomers often have surfaces that are not as hydrophobic as MFDs made from polydimethylsiloxane. Droplet microfluidics in these types of devices are subject to droplet adhesion and aqueous spreading on less hydrophobic MFD surfaces. We have developed a post-processing technique using hydrophobic monomers that renders the surfaces of these devices much more hydrophobic.
View Article and Find Full Text PDFDiagnostic blood tests can guide the administration of healthcare to save and improve lives. Most clinical biosensing blood tests require a trained technician and specialized equipment to process samples and interpret results, which greatly limits test accessibility. Colorimetric paper-based diagnostics have an equipment-free readout, but raw blood obscures a colorimetric response which has motivated diverse efforts to develop blood sample processing techniques.
View Article and Find Full Text PDFChemotherapeutic drugs are highly effective in treating cancer. However, the side effects associated with this treatment lower the quality of life of cancer patients. Smart nanocarriers are able to encapsulate these drugs to deliver them to tumors while reducing their contact with the healthy cells and the subsequent side effects.
View Article and Find Full Text PDFA number of promising nano-sized particles (nanoparticles) have been developed to conquer the limitations of conventional chemotherapy. One of the most promising methods is stimuli-responsive nanoparticles because they enable the safe delivery of the drugs while controlling their release at the tumor sites. Different intrinsic and extrinsic stimuli can be used to trigger drug release such as temperature, redox, ultrasound, magnetic field, and pH.
View Article and Find Full Text PDFTemperature excursions within a biological milieu can be effectively used to induce drug release from thermosensitive drug-encapsulating nanoparticles. Oncological hyperthermia is of particular interest, as it is proven to synergistically act to arrest tumor growth when combined with optimally-designed smart drug delivery systems (DDSs). Thermoresponsive DDSs aid in making the drugs more bioavailable, enhance the therapeutic index and pharmacokinetic trends, and provide the spatial placement and temporal delivery of the drug into localized anatomical sites.
View Article and Find Full Text PDFAntibiotic resistance, particularly in cases of sepsis, has emerged as a growing global public health concern and economic burden. Current methods of blood culture and antimicrobial susceptibility testing of agents involved in sepsis can take as long as 3-5 days. It is vital to rapidly identify which antimicrobials can be used to effectively treat sepsis cases on an individual basis.
View Article and Find Full Text PDFThe COVID-19 pandemic has illustrated the global demand for rapid, low-cost, widely distributable and point-of-care nucleic acid diagnostic technologies. Such technologies could help disrupt transmission, sustain economies and preserve health and lives during widespread infection. In contrast, conventional nucleic acid diagnostic procedures require trained personnel, complex laboratories, expensive equipment, and protracted processing times.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
June 2021
The delivery of chemotherapeutics to solid tumors using smart drug delivery systems (SDDSs) takes advantage of the unique physiology of tumors (i.e., disordered structure, leaky vasculature, abnormal extracellular matrix (ECM), and limited lymphatic drainage) to deliver anticancer drugs with reduced systemic side effects.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
April 2021
The safe and effective delivery of anticancer agents to diseased tissues is one of the significant challenges in cancer therapy. Conventional anticancer agents are generally cytotoxins with poor pharmacokinetics and bioavailability. Nanocarriers are nanosized particles designed for the selectivity of anticancer drugs and gene transport to tumors.
View Article and Find Full Text PDFDroplet generation has been widely used in conventional two-dimensional (2D) microfluidic devices, and has recently begun to be explored for 3D-printed droplet generators. A major challenge for 3D-printed devices is preventing water-in-oil droplets from sticking to the interior surfaces of the droplet generator when the device is not made from hydrophobic materials. In this study, two approaches were investigated and shown to successfully form droplets in 3D-printed microfluidic devices.
View Article and Find Full Text PDFBiotechnol Prog
November 2020
Bacteria must be separated from septic whole blood in preparation for rapid antibiotic susceptibility tests. This work improves upon past work isolating bacteria from whole blood by exploring an important experimental factor: Whole blood dilution. Herein, we use the continuity equation to model red blood cell sedimentation and show that overall spinning time decreases as the blood is diluted.
View Article and Find Full Text PDFBacterial antibiotic resistance is becoming a significant health threat, and rapid identification of antibiotic-resistant bacteria is essential to save lives and reduce the spread of antibiotic resistance. This paper analyzes the ability of machine learning algorithms (MLAs) to process data from a novel spectroscopic diagnostic device to identify antibiotic-resistant genes and bacterial species by comparison to available bacterial DNA sequences. Simulation results show that the algorithms attain from 92% accuracy (for genes) up to 99% accuracy (for species).
View Article and Find Full Text PDFMicrofluid Nanofluidics
November 2019
3D hydrodynamic focusing was implemented with channel cross-section dimensions smaller than 10 μm. Microchannels were formed using sacrificial etching of two photoresist layers on a silicon wafer. The photoresist forms a plus-shaped prismatic focusing fluid junction which was coated with plasma-enhanced chemical-vapor-deposited oxide.
View Article and Find Full Text PDFThis study investigated the potential of delivering an anti-glaucoma drug using commercial silicone hydrogel (SiHy) contact lenses. The moderately hydrophobic drug latanoprost was rapidly loaded in 4 min by swelling contact lenses in a solution of the drug in n-propanol. A fraction of the drug was radiolabeled, thus allowing measurement of the uptake and subsequent release of drug into artificial tear fluid.
View Article and Find Full Text PDFRapid diagnosis of blood infections requires fast and efficient separation of bacteria from blood. We have developed spinning hollow disks that separate bacteria from blood cells via the differences in sedimentation velocities of these particles. Factors affecting separation included the spinning speed and duration, and disk size.
View Article and Find Full Text PDF