Publications by authors named "William G Walton"

CHD1 is a chromodomain-helicase DNA-binding protein that preferentially recognizes di- and trimethylated lysine 4 on histone H3 (H3K4me2/3). Genetic studies have established CHD1 as a synthetic lethal target in phosphatase and tensin homologue (PTEN)-deficient cancers. Despite this attractive therapeutic link, no inhibitors or antagonists of CHD1 have been reported to date.

View Article and Find Full Text PDF

Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial β-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation.

View Article and Find Full Text PDF

The majority of large multiresistance plasmids of Staphylococcus aureus utilise a RepA_N-type replication initiation protein, the expression of which is regulated by a small antisense RNA (RNAI) that overlaps the rep mRNA leader. The pSK41/pGO1-family of conjugative plasmids additionally possess a small (86 codon) divergently transcribed ORF (orf86) located upstream of the rep locus. The product of pSK41 orf86 was predicted to have a helix-turn-helix motif suggestive of a likely function in transcriptional repression.

View Article and Find Full Text PDF

Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa.

View Article and Find Full Text PDF

Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human β-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood.

View Article and Find Full Text PDF

Chemical signalling in the plant microbiome can have drastic effects on microbial community structure, and on host growth and development. Previously, we demonstrated that the auxin metabolic signal interference performed by the bacterial genus Variovorax via an auxin degradation locus was essential for maintaining stereotypic root development in an ecologically relevant bacterial synthetic community. Here, we dissect the Variovorax auxin degradation locus to define the genes iadDE as necessary and sufficient for indole-3-acetic acid (IAA) degradation and signal interference.

View Article and Find Full Text PDF

Plant nucleotide-binding leucine-rich repeat receptors (NLRs) regulate immunity and cell death. In , a subfamily of "helper" NLRs is required by many "sensor" NLRs. Active NRG1.

View Article and Find Full Text PDF

Phase II drug metabolism inactivates xenobiotics and endobiotics through the addition of either a glucuronic acid or sulfate moiety prior to excretion, often via the gastrointestinal tract. While the human gut microbial β-glucuronidase enzymes that reactivate glucuronide conjugates in the intestines are becoming well characterized and even controlled by targeted inhibitors, the sulfatases encoded by the human gut microbiome have not been comprehensively examined. Gut microbial sulfatases are poised to reactivate xenobiotics and endobiotics, which are then capable of undergoing enterohepatic recirculation or exerting local effects on the gut epithelium.

View Article and Find Full Text PDF

Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial β-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models.

View Article and Find Full Text PDF

Pregnane X receptor (PXR) is a master xenobiotic-sensing transcription factor and a validated target for immune and inflammatory diseases. The identification of chemical probes to investigate the therapeutic relevance of the receptor is still highly desired. In fact, currently available PXR ligands are not highly selective and can exhibit toxicity and/or potential off-target effects.

View Article and Find Full Text PDF

The human PXR (pregnane X receptor), a master regulator of drug metabolism, has essential roles in intestinal homeostasis and abrogating inflammation. Existing PXR ligands have substantial off-target toxicity. Based on prior work that established microbial (indole) metabolites as PXR ligands, we proposed microbial metabolite mimicry as a novel strategy for drug discovery that allows exploiting previously unexplored parts of chemical space.

View Article and Find Full Text PDF

It is increasingly clear that interindividual variability in human gut microbial composition contributes to differential drug responses. For example, gastrointestinal (GI) toxicity is not observed in all patients treated with the anticancer drug irinotecan, and it has been suggested that this variability is a result of differences in the types and levels of gut bacterial β-glucuronidases (GUSs). GUS enzymes promote drug toxicity by hydrolyzing the inactive drug-glucuronide conjugate back to the active drug, which damages the GI epithelium.

View Article and Find Full Text PDF

Regorafenib (Stivarga) is an oral small molecule kinase inhibitor used to treat metastatic colorectal cancer, hepatocellular carcinomas, and gastrointestinal stromal tumors. Diarrhea is one of the most frequently observed adverse reactions associated with regorafenib. This toxicity may arise from the reactivation of the inactive regorafenib-glucuronide to regorafenib by gut microbial β-glucuronidase (GUS) enzymes in the gastrointestinal tract.

View Article and Find Full Text PDF

Gut microbial β-glucuronidase (GUS) enzymes play important roles in drug efficacy and toxicity, intestinal carcinogenesis, and mammalian-microbial symbiosis. Recently, the first catalog of human gut GUS proteins was provided for the Human Microbiome Project stool sample database and revealed 279 unique GUS enzymes organized into six categories based on active-site structural features. Because mice represent a model biomedical research organism, here we provide an analogous catalog of mouse intestinal microbial GUS proteins-a mouse gut GUSome.

View Article and Find Full Text PDF

The human gut microbiome is a ripe space for the discovery of new proteins and novel functions. Many genes in the gut microbiome encode glycoside hydrolases that help bacteria scavenge sugars present in the human gut. Glycoside hydrolase family 2 (GH2) is one group of sugar-scavenging proteins, which includes β-glucuronidases (GUS) and β-galacturonidases (GalAses), enzymes that cleave the sugar conjugates of the epimers glucuronate and galacturonate.

View Article and Find Full Text PDF

Bacterial β-glucuronidase (GUS) enzymes cause drug toxicity by reversing Phase II glucuronidation in the gastrointestinal tract. While many human gut microbial GUS enzymes have been examined with model glucuronide substrates like p-nitrophenol-β-D-glucuronide (pNPG), the GUS orthologs that are most efficient at processing drug-glucuronides remain unclear. Here we present the crystal structures of GUS enzymes from human gut commensals Lactobacillus rhamnosus, Ruminococcus gnavus, and Faecalibacterium prausnitzii that possess an active site loop (Loop 1; L1) analogous to that found in E.

View Article and Find Full Text PDF

The human gut microbiota encodes β-glucuronidases (GUSs) that play key roles in health and disease via the metabolism of glucuronate-containing carbohydrates and drugs. Hundreds of putative bacterial GUS enzymes have been identified by metagenomic analysis of the human gut microbiome, but less than 10% have characterized structures and functions. Here we describe a set of unique gut microbial GUS enzymes that bind flavin mononucleotide (FMN).

View Article and Find Full Text PDF

The glycoside hydrolases encoded by the human gut microbiome play an integral role in processing a variety of exogenous and endogenous glycoconjugates. Here we present three structurally and functionally distinct β-glucuronidase (GUS) glycoside hydrolases from a single human gut commensal microbe, We show using nine crystal structures, biochemical, and biophysical data that whereas these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique enzyme active sites. Notably, quaternary structure plays an important role in creating distinct active site features that are hard to predict via structural modeling methods.

View Article and Find Full Text PDF

β-Glucuronidase (GUS) enzymes in the gastrointestinal tract are involved in maintaining mammalian-microbial symbiosis and can play key roles in drug efficacy and toxicity. Parabacteroides merdae GUS was identified as an abundant mini-Loop 2 (mL2) type GUS enzyme in the Human Microbiome Project gut metagenomic database. Here, we report the crystal structure of P.

View Article and Find Full Text PDF

SPLUNC1 is a multifunctional protein of the airway with antimicrobial properties. We previously reported that it displayed antibiofilm activities against P. aeruginosa.

View Article and Find Full Text PDF

Microbial β-glucuronidases (GUSs) cause severe gut toxicities that limit the efficacy of cancer drugs and other therapeutics. Selective inhibitors of bacterial GUS have been shown to alleviate these side effects. Using structural and chemical biology, mass spectrometry, and cell-based assays, we establish that piperazine-containing GUS inhibitors intercept the glycosyl-enzyme catalytic intermediate of these retaining glycosyl hydrolases.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a common genetic disease with significantly increased mortality. CF airways exhibit ion transport abnormalities, including hyperactivity of the epithelial Na channel (ENaC). Short-palate lung and nasal epithelial clone 1 (SPLUNC1) is a multifunctional innate defense protein that is secreted into the airway lumen.

View Article and Find Full Text PDF

The gut microbiota harbor diverse β-glucuronidase (GUS) enzymes that liberate glucuronic acid (GlcA) sugars from small-molecule conjugates and complex carbohydrates. However, only the Enterobacteriaceae family of human gut-associated Proteobacteria maintain a GUS operon under the transcriptional control of a glucuronide repressor, GusR. Despite its potential importance in , , , , and opportunistic pathogens, the structure of GusR has not been examined.

View Article and Find Full Text PDF

Microbiome-encoded β-glucuronidase (GUS) enzymes play important roles in human health by metabolizing drugs in the gastrointestinal (GI) tract. The numbers, types, and diversity of these proteins in the human GI microbiome, however, remain undefined. We present an atlas of GUS enzymes comprehensive for the Human Microbiome Project GI database.

View Article and Find Full Text PDF

Human GEN1 and yeast Yen1 are endonucleases with the ability to cleave Holliday junctions (HJs), which are proposed intermediates in recombination. In vivo, GEN1 and Yen1 function secondarily to Mus81, which has weak activity on intact HJs. We show that the genetic relationship is reversed in Drosophila, with Gen mutants having more severe defects than mus81 mutants.

View Article and Find Full Text PDF