Atomically precise graphene nanoribbons (GNRs) synthesized from the bottom-up exhibit promising electronic properties for high-performance field-effect transistors (FETs). The feasibility of fabricating FETs with GNRs (GNRFETs) has been demonstrated, with ongoing efforts aimed at further improving their performance. However, their long-term stability and reliability remain unexplored, which is as important as their performance for practical applications.
View Article and Find Full Text PDFUsing Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe in the presence of clustering.
View Article and Find Full Text PDFCoordination networks (CNs) that undergo gas-induced transformation from closed (nonporous) to open (porous) structures are of potential utility in gas storage applications, but their development is hindered by limited control over their switching mechanisms and pressures. In this work, we report two CNs, [Co(bimpy)(bdc)] () and [Co(bimbz)(bdc)] () (Hbdc = 1,4-benzendicarboxylic acid; bimpy = 2,5-bis(1H-imidazole-1-yl)pyridine; bimbz = 1,4-bis(1H-imidazole-1-yl)benzene), that both undergo transformation from closed to isostructural open phases involving at least a 27% increase in cell volume. Although and only differ from one another by one atom in their -donor linkers (bimpy = pyridine, and bimbz = benzene), this results in different pore chemistry and switching mechanisms.
View Article and Find Full Text PDFAlthough cyclic voltammetry (CV) measurements in solution have been widely used to determine the highest occupied molecular orbital energy (E ) of semiconducting organic molecules, an understanding of the experimentally observed discrepancies due to the solvent used is lacking. To explain these differences, we investigate the solvent effects on E by combining density functional theory and molecular dynamics calculations for four donor molecules with a common backbone moiety. We compare the experimental E values to the calculated values obtained from either implicit or first solvation shell theories.
View Article and Find Full Text PDFAnatase/rutile constituting TiO thin films were prepared by sputter deposition, and the influence of the post-annealing step with a narrow window at 200 °C revealed a gaining factor of 5 in H production. An in-depth analysis of the photocatalytic performance revealed the dominant role of intermediate states rather than the heterocrystalline nature and the mesoscale structure. Structural, chemical and optical investigations based on scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV-visible spectroscopy and photoluminescence supported by calculation correlated the H production with the dual presence of OH and Ti defects in the form of titanium interstitial atoms.
View Article and Find Full Text PDFWe perform first-principles calculations to explore the electronic, thermodynamic and dielectric properties of two-dimensional (2D) layered, alkaline-earth hydroxides Ca(OH)2 and Mg(OH)2. We calculate the lattice parameters, exfoliation energies and phonon spectra of monolayers and also investigate the thermal properties of these monolayers, such as the Helmholtz free energy, heat capacity at constant volume and entropy as a function of temperature. We employ Density Functional Perturbation Theory (DFPT) to calculate the in-plane and out-of-plane static dielectric constant of the bulk and monolayer samples.
View Article and Find Full Text PDFUsing first-principles calculations, we investigate six transition-metal nitride halides (TMNHs): HfNBr, HfNCl, TiNBr, TiNCl, ZrNBr, and ZrNCl as potential van der Waals (vdW) dielectrics for transition metal dichalcogenide (TMD) channel transistors. We calculate the exfoliation energies and bulk phonon energies and find that the six TMNHs are exfoliable and thermodynamically stable. We calculate both the optical and static dielectric constants in the in-plane and out-of-plane directions for both monolayer and bulk TMNHs.
View Article and Find Full Text PDFTo realize effective van der Waals (vdW) transistors, vdW dielectrics are needed in addition to vdW channel materials. We study the dielectric properties of 32 exfoliable vdW materials using first principles methods. We calculate the static and optical dielectric constants and discover a large out-of-plane permittivity in GeClF, PbClF, LaOBr, and LaOCl, while the in-plane permittivity is high in BiOCl, PbClF, and TlF.
View Article and Find Full Text PDFWe study the magnetic properties of platinum diselenide (PtSe) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature.
View Article and Find Full Text PDFHydrogenation and fluorination have been presented as two possible methods to open a bandgap in graphene, required for field-effect transistor applications. In this work, we present a detailed study of the phonon-limited mobility of electrons and holes in hydrogenated graphene (graphane) and fluorinated graphene (graphene fluoride). We pay special attention to the out-of-plane acoustic (ZA) phonons, responsible for the highest scattering rates in graphane and graphene fluoride.
View Article and Find Full Text PDFSilicane, a hydrogenated monolayer of hexagonal silicon, is a candidate material for future complementary metal-oxide-semiconductor technology. We determined the phonon-limited mobility and the velocity-field characteristics for electrons and holes in silicane from first principles, relying on density functional theory. Transport calculations were performed using a full-band Monte Carlo scheme.
View Article and Find Full Text PDFThe transfer-free direct growth of high-performance materials and devices can enable transformative new technologies. Here, room-temperature field-effect hole mobilities as high as 707 cm V s are reported, achieved using transfer-free, low-temperature (≤120 °C) direct growth of helical tellurium (Te) nanostructure devices on SiO /Si. The Te nanostructures exhibit significantly higher device performance than other low-temperature grown semiconductors, and it is demonstrated that through careful control of the growth process, high-performance Te can be grown on other technologically relevant substrates including flexible plastics like polyethylene terephthalate and graphene in addition to amorphous oxides like SiO /Si and HfO .
View Article and Find Full Text PDFThe topologically protected surface states of three-dimensional (3D) topological insulators have the potential to be transformative for high-performance logic and memory devices by exploiting their specific properties such as spin-polarized current transport and defect tolerance due to suppressed backscattering. However, topological insulator based devices have been underwhelming to date primarily due to the presence of parasitic issues. An important example is the challenge of suppressing bulk conduction in BiSe and achieving Fermi levels ( E) that reside in between the bulk valence and conduction bands so that the topologically protected surface states dominate the transport.
View Article and Find Full Text PDFTo overcome the challenge of using two-dimensional materials for nanoelectronic devices, we propose two-dimensional topological insulator field-effect transistors that switch based on the modulation of scattering. We model transistors made of two-dimensional topological insulator ribbons accounting for scattering with phonons and imperfections. In the on-state, the Fermi level lies in the bulk bandgap and the electrons travel ballistically through the topologically protected edge states even in the presence of imperfections.
View Article and Find Full Text PDFMetal-insulator transitions in low-dimensional materials under ambient conditions are rare and worth pursuing due to their intriguing physics and rich device applications. Monolayer MoTe2 and WTe2 are distinguished from other TMDs by the existence of an exceptional semimetallic distorted octahedral structure (T') with a quite small energy difference from the semiconducting H phase. In the process of transition metal alloying, an equal stability point of the H and the T' phase is observed in the formation energy diagram of monolayer WxMo1-xTe2.
View Article and Find Full Text PDF