Publications by authors named "William G Stetler-Stevenson"

Biotin ligase-based proximity ligation is a widely used, highly effective technique for the study of in vivo protein-protein interactions. However, there are few reports and little consensus on the most effective methods for studying the proximal interactomes of secreted factors. Here, we present a protocol for studying extracellular proximal interactomes using an adaptation of TurboID/BioID2-based proximity ligation.

View Article and Find Full Text PDF

Proximity labeling (PL) has given researchers the tools to explore protein-protein interactions (PPIs) in living systems; however, most PL studies are performed on intracellular targets. We have adapted the original PL method to investigate PPIs within the extracellular compartment, which we term extracellular PL (ePL). To demonstrate the utility of this modified technique, we investigated the interactome of the matrisome protein TIMP2.

View Article and Find Full Text PDF

Extracellular matrix remodeling is a hallmark of tissue development, homeostasis, and disease. The processes that mediate remodeling, and the consequences of such, are the topic of extensive focus in biomedical research. Cell culture methods represent a crucial tool utilized by those interested in matrisome function, the easiest of which are implemented with immortalized/cancer cell lines.

View Article and Find Full Text PDF

Classical methods of investigating protein-protein interactions (PPIs) are generally performed in non-living systems, yet in recent years new technologies utilizing proximity labeling (PL) have given researchers the tools to explore proximal PPIs in living systems. PL has distinct advantages over traditional protein interactome studies, such as the ability to identify weak and transient interactions in vitro and in vivo. Most PL studies are performed on targets within the cell or on the cell membrane.

View Article and Find Full Text PDF

The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts.

View Article and Find Full Text PDF
Article Synopsis
  • TIMP2, a tissue inhibitor, shows potential in reducing tumor growth and metastasis in lung cancer models, but its mechanisms need further exploration.* -
  • Mice with a TIMP2 mutation display worse outcomes, such as increased tumor growth and immune cell infiltration, while recombinant TIMP2 treatment lowers tumors in both mutant and normal mice.* -
  • Treatment with TIMP2 changes gene expression differently in mutant versus wild-type mice, indicating its role in altering the tumor environment and suggesting its use as an additional treatment for non-small cell lung cancer (NSCLC).*
View Article and Find Full Text PDF

Extracellular proteolysis and turnover are core processes of tissue homeostasis. The predominant matrix-degrading enzymes are members of the Matrix Metalloproteinase (MMP) family. MMPs extensively degrade core matrix components in addition to processing a range of other factors in the extracellular, plasma membrane, and intracellular compartments.

View Article and Find Full Text PDF

Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis.

View Article and Find Full Text PDF

Tissue inhibitor of metalloproteinases (TIMPs/Timps) are an endogenous family of widely expressed matrisome-associated proteins that were initially identified as inhibitors of matrix metalloproteinase activity (Metzincin family proteases). Consequently, TIMPs are often considered simply as protease inhibitors by many investigators. However, an evolving list of new metalloproteinase-independent functions for TIMP family members suggests that this concept is outdated.

View Article and Find Full Text PDF

Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity.

View Article and Find Full Text PDF

Natural Killer (NK) cells have been found to be anergic, exhausted and pro-angiogenic in cancers. NK cell from healthy donors, exposed to TGFβ, acquire the CD56CD9CD49a decidual-like-phenotype, together with decreased levels of NKG2D activation marker, increased levels of TIM-3 exhaustion marker, similar to cancer-associated NK cells. Tissue inhibitors of metalloproteases (TIMPs) exert dual roles in cancer.

View Article and Find Full Text PDF

Transdifferentiation (or activation) of hepatic stellate cells (HSCs) to myofibroblasts is a key event in liver fibrosis. Activated HSCs in the tumor microenvironment reportedly promote tumor progression. This study analyzed the effect of an inhibitor of HSC activation, retinol-binding protein-albumin domain III fusion protein (R-III), on protumorigenic functions of HSCs.

View Article and Find Full Text PDF
Article Synopsis
  • Aerobic glycolysis, known as the Warburg effect, is characterized by increased lactate production in cancer cells due to the hyperactivity of the enzyme lactate dehydrogenase A (LDHA).
  • The study identifies folliculin (FLCN), a human tumor suppressor, as a key inhibitor of LDHA, regulating its activity to maintain metabolic balance in normal cells.
  • In cancer cells, the loss or dissociation of FLCN from LDHA leads to the Warburg effect, and targeting this interaction with specific peptides can induce cell death in those cancer cells.
View Article and Find Full Text PDF

Matrix metalloprotease (MMP) activation contributes to the degradation of the extracellular matrix (ECM), resulting in a multitude of pathologies. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifaceted endocytic and signaling receptor that is responsible for internalization and lysosomal degradation of diverse proteases, protease inhibitors, and lipoproteins along with numerous other proteins. In this study, we identified MMP-1 as a novel LRP1 ligand.

View Article and Find Full Text PDF

Remodeling of the extracellular matrix (ECM) to facilitate invasion and metastasis is a universal hallmark of cancer progression. However, a definitive therapeutic target remains to be identified in this tissue compartment. As major modulators of ECM structure and function, matrix metalloproteinases (MMPs) are highly expressed in cancer and have been shown to support tumor progression.

View Article and Find Full Text PDF

Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis.

View Article and Find Full Text PDF

The extracellular molecular chaperone heat shock protein 90 (eHSP90) stabilizes protease client the matrix metalloproteinase 2 (MMP2), leading to tumor cell invasion. Although co-chaperones are critical modulators of intracellular HSP90:client function, how the eHSP90:MMP2 complex is regulated remains speculative. Here, we report that the tissue inhibitor of metalloproteinases-2 (TIMP2) is a stress-inducible extracellular co-chaperone that binds to eHSP90, increases eHSP90 binding to ATP, and inhibits its ATPase activity.

View Article and Find Full Text PDF

The tissue inhibitor of metalloproteinases 2 (TIMP-2) is a specific endogenous inhibitor of matrix metalloproteinase 2 (MMP-2), which is a key enzyme that degrades the extracellular matrix and promotes tumor cell invasion. Although the TIMP-2:MMP-2 complex controls proteolysis, the signaling mechanism by which the two proteins associate in the extracellular space remains unidentified. Here we report that TIMP-2 is phosphorylated outside the cell by secreted c-Src tyrosine kinase.

View Article and Find Full Text PDF

Tissue inhibitor of metalloproteinase 2 (TIMP-2) is an endogenous 22 kDa proteinase inhibitor, demonstrating antitumorigenic, antimetastatic and antiangiogenic activities in vitro and in vivo. Recombinant TIMP-2 is currently undergoing preclinical testing in multiple, murine tumor models. Here we report the development of an inert, injectable peptide hydrogel matrix enabling encapsulation and sustained release of TIMP-2.

View Article and Find Full Text PDF

Tissue inhibitor of metalloprotease-2 (TIMP-2) is a secreted 21 kDa multifunctional protein first described as an endogenous inhibitor of matrix metalloproteinases (MMPs) that prevents breakdown of the extracellular matrix often observed in chronic diseases. TIMP-2 diminishes the level of growth factor-mediated cell proliferation in vitro, as well as neoangiogenesis and tumor growth in vivo independent of its MMP inhibitory activity. These physiological properties make TIMP-2 an excellent candidate for further preclinical development as a biologic therapy of cancer.

View Article and Find Full Text PDF

The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90.

View Article and Find Full Text PDF

The ability of Heat Shock Protein 90 (Hsp90) to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific "client" proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown.

View Article and Find Full Text PDF

Identifying novel therapeutic agents from natural sources and their possible intervention studies has been one of the major areas in biomedical research in recent years. Piper species are highly important - commercially, economically and medicinally. Our groups have been working for more than two decades on the identification and characterization of novel therapeutic lead molecules from Piper species.

View Article and Find Full Text PDF

Objective: Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous inhibitor of matrix metalloproteinases (MMPs) that attenuates maladaptive cardiac remodeling in ischemic heart failure. We examined the effects of TIMP-2 on human cardiac fibroblast activation and extracellular matrix (ECM) remodeling.

Methods: Human cardiac fibroblasts within a three-dimensional collagen matrix were assessed for phenotype conversion, ECM architecture and key molecular regulators of ECM remodeling after differential exposure to TIMP-2 and Ala+TIMP-2 (a modified TIMP-2 analogue devoid of MMP inhibitory activity).

View Article and Find Full Text PDF