Publications by authors named "William G O'Brien"

The observation that induced torpor in non-hibernating mammals could result from an increased AMP concentration in circulation led our investigation to reveal that the added AMP altered oxygen transport of erythrocytes. To further study the effect of AMP in regulation of erythrocyte function and systemic metabolism, we generated mouse models deficient in key erythrocyte enzymes in AMP metabolism. We have previously reported altered erythrocyte adenine nucleotide levels corresponding to altered oxygen saturation in mice deficient in both CD73 and AMPD3.

View Article and Find Full Text PDF

Background: Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5'-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR).

View Article and Find Full Text PDF

Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice.

View Article and Find Full Text PDF

We have demonstrated that 5'-adenosine-monophosphate (5'-AMP) can be used to induce deep hypometabolism in mice and other non-hibernating mammals. This reversible 5'-AMP induced hypomatabolism (AIHM) allows mice to maintain a body temperature about 1°C above the ambient temperature for several hours before spontaneous reversal to euthermia. Our biochemical and gene expression studies suggested that the molecular processes involved in AIHM behavior most likely occur at the metabolic interconversion level, rather than the gene or protein expression level.

View Article and Find Full Text PDF

A hypometabolic state can be induced in mice by 5'-AMP administration. Previously we proposed that an underlying mechanism for this hypometabolism is linked to reduced erythrocyte oxygen transport function due to 5'-AMP uptake altering the cellular adenylate equilibrium. To test this hypothesis, we generated mice deficient in adenosine monophosphate deaminase 3 (AMPD3), the key catabolic enzyme for 5'-AMP in erythrocytes.

View Article and Find Full Text PDF

It is well established that leptin regulates energy balance largely through isoform B leptin receptor-expressing neurons (LepR neurons) in the brain and that leptin activates one subset of LepR neurons (leptin-excited neurons) while inhibiting the other (leptin-inhibited neurons). However, the neurotransmitters released from LepR neurons that mediate leptin action in the brain are not well understood. Previous results demonstrate that leptin mainly acts on γ-aminobutyric acid (GABA)ergic neurons to reduce body weight, and that leptin activates proopiomelanocortin neuron activity by reducing GABA release onto these neurons, suggesting a body weight-promoting role for GABA released from leptin-inhibited neurons.

View Article and Find Full Text PDF

Biochemical and mechanistic aspects into how various hypometabolic states are initiated in mammals are poorly understood. Here, we show how a state of hypometabolism is initiated by 5'-AMP uptake by erythrocytes. Wild type, ecto-5'-nucleotidase-deficient, and adenosine receptor-deficient mice undergo 5'-AMP-induced hypometabolism in a similar fashion.

View Article and Find Full Text PDF