To develop novel treatments for type 2 diabetes and dyslipidemia, we pursued inhibitors of serine palmitoyl transferase (SPT). To this end compounds 1 and 2 were developed as potent SPT inhibitors in vitro. 1 and 2 reduce plasma ceramides in rodents, have a slight trend toward enhanced insulin sensitization in DIO mice, and reduce triglycerides and raise HDL in cholesterol/cholic acid fed rats.
View Article and Find Full Text PDFA 1H69 crystal structure-based in silico model of the NAD(P)H:quinone oxidoreductase 1 (NQO1) active site has been developed to facilitate NQO1-directed lavendamycin antitumor agent development. Lavendamycin analogues were designed as NQO1 substrates utilizing structure-based design criteria. Computational docking studies were performed using the model to predict NQO1 substrate specificity.
View Article and Find Full Text PDFA series of 6-bicycloaryloxynicotinamides were identified as opioid receptor antagonists at mu, kappa, and delta receptors. Compounds in the 6-(2,3,4,5-tetrahydro-1H-benzo[c]azepin-7-yloxy)nicotinamide scaffold exhibited potent in vitro functional antagonism at all three receptors.
View Article and Find Full Text PDFA structurally unique and new class of opioid receptor antagonists (OpRAs) that bear no structural resemblance with morphine or endogenous opioid peptides has been discovered. A series of carboxamido-biaryl ethers were identified as potent receptor antagonists against mu, kappa and delta opioid receptors. The structure-activity relationship indicated para-substituted aryloxyaryl primary carboxamide bearing an amine tether on the distal phenyl ring was optimal for potent in vitro functional antagonism against three opioid receptor subtypes.
View Article and Find Full Text PDF