Unlabelled: Recent studies report the genetic loss of the lariat debranching enzyme ( ) activity increases susceptibility to viral infection. Here, we show that more than 25% of human introns contain large hairpin structures created by the folding of two elements inserted in opposite orientation. In wildtype cells, this large reservoir of endogenous dsRNA is efficiently degraded.
View Article and Find Full Text PDFMutations that impact splicing play a significant role in disease etiology but are not fully understood. To characterize the impact of exonic variants on splicing in 71 clinically-actionable disease genes in asymptomatic people, we analyzed 32,112 exonic mutations from ClinVar and Geisinger MyCode using a minigene reporter assay. We identify 1,733 splice-disrupting mutations, of which the most extreme 1-2% of variants are likely to be deleterious.
View Article and Find Full Text PDFThe majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover.
View Article and Find Full Text PDFBackground: The removal of introns occurs through the splicing of a 5' splice site (5'ss) with a 3' splice site (3'ss). These two elements are recognized by distinct components of the spliceosome. However, introns in higher eukaryotes contain many matches to the 5' and 3' splice-site motifs that are presumed not to be used.
View Article and Find Full Text PDFIn eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1.
View Article and Find Full Text PDFThe majority of genic transcription is intronic. Introns are removed by splicing as branched lariat RNAs which require rapid recycling. The branch site is recognized during splicing catalysis and later debranched by Dbr1 in the rate-limiting step of lariat turnover.
View Article and Find Full Text PDFThe pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC).
View Article and Find Full Text PDFHumans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations.
View Article and Find Full Text PDFVariants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continue to cause disease and impair the effectiveness of treatments. The therapeutic potential of convergent neutralizing antibodies (NAbs) from fully recovered patients has been explored in several early stages of novel drugs. Here, we identified initially elicited NAbs (Ig Heavy, Ig lambda, Ig kappa) in response to COVID-19 infection in patients admitted to the intensive care unit at a single center with deep RNA sequencing (>100 million reads) of peripheral blood as a diagnostic tool for predicting the severity of the disease and as a means to pinpoint specific compensatory NAb treatments.
View Article and Find Full Text PDFThe RNA lariat debranching enzyme is the sole enzyme responsible for hydrolyzing the 2'-5' phosphodiester bond in RNA lariats produced by the spliceosome. Here, we test the ability of Dbr1 to hydrolyze branched RNAs (bRNAs) that contain a 2'-5'-phosphorothioate linkage, a modification commonly used to resist degradation. We attempted to cocrystallize a phosphorothioate-branched RNA (PS-bRNA) with wild-type Dbr1 (EhDbr1) but observed in-crystal hydrolysis of the phosphorothioate bond.
View Article and Find Full Text PDFCOVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19.
View Article and Find Full Text PDFIn eukaryotic cells, intron lariats produced by the spliceosome contain a 2'5' phosphodiester linkage. The RNA lariat debranching enzyme, Dbr1, is the only enzyme known to hydrolyze this bond. Dbr1 is a member of the metallophosphoesterase (MPE) family of enzymes, and recent X-ray crystal structures and biochemistry data demonstrate that Dbr1 from uses combinations of Mn, Zn, and Fe as enzymatic cofactors.
View Article and Find Full Text PDFTo determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5' splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines.
View Article and Find Full Text PDFSevere acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is transmitted through airborne particles in exhaled breath, causing severe respiratory disease, coronavirus disease-2019 (COVID-19), in some patients. Samples for SARS-CoV-2 testing are typically collected by nasopharyngeal swab, with the virus detected by PCR; however, patients can test positive for 3 months after infection. Without the capacity to assay SARS-CoV-2 in breath, it is not possible to understand the risk for transmission from infected individuals.
View Article and Find Full Text PDFBackground: DNA sequencing is increasingly incorporated into the routine care of cancer patients, many of whom also carry inherited, moderate/high-penetrance variants associated with other diseases. Yet, the prevalence and consequence of such variants remain unclear.
Methods: We analyzed the germline genomes of 10,389 adult cancer cases in the TCGA cohort, identifying pathogenic/likely pathogenic variants in autosomal-dominant genes, autosomal-recessive genes, and 59 medically actionable genes curated by the American College of Molecular Genetics (i.
High-throughput splicing assays have demonstrated that many exonic variants can disrupt splicing; however, splice-disrupting variants distribute non-uniformly across genes. We propose the existence of exons that are particularly susceptible to splice-disrupting variants, which we refer to as hotspot exons. Hotspot exons are also more susceptible to splicing perturbation through drug treatment and knock-down of RNA-binding proteins.
View Article and Find Full Text PDFPurpose: COVID-19 has impacted millions of patients across the world. Molecular testing occurring now identifies the presence of the virus at the sampling site: nasopharynx, nares, or oral cavity. RNA sequencing has the potential to establish both the presence of the virus and define the host's response in COVID-19.
View Article and Find Full Text PDFExonic splicing enhancers (ESEs) are enriched in exons relative to introns and bind splicing activators. This study considers a fundamental question of co-evolution: How did ESE motifs become enriched in exons prior to the evolution of ESE recognition? We hypothesize that the high exon to intron motif ratios necessary for ESE function were created by mutational bias coupled with purifying selection on the protein code. These two forces retain certain coding motifs in exons while passively depleting them from introns.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
February 2020
RNA splicing, the process through which intervening segments of noncoding RNA (introns) are excised from pre-mRNAs to allow for the formation of a mature mRNA product, has long been appreciated for its capacity to add complexity to eukaryotic proteomes. However, evidence suggests that the utility of this process extends beyond protein output and provides cells with a dynamic tool for gene regulation. In this review, we aim to highlight the role that intronic RNA plays in mediating specific splicing outcomes in pre-mRNA processing, as well as explore an emerging class of stable intronic sequences that have been observed to act in gene expression control.
View Article and Find Full Text PDFBackground: Most intronic lariats are rapidly turned over after splicing. However, new research suggests that some introns may have additional post-splicing functions. Current bioinformatics methods used to identify lariats require a sequencing read that traverses the lariat branchpoint.
View Article and Find Full Text PDFPrecision medicine and sequence-based clinical diagnostics seek to predict disease risk or to identify causative variants from sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. In the past, few CAGI challenges have addressed the impact of sequence variants on splicing.
View Article and Find Full Text PDFClassification of variants of unknown significance is a challenging technical problem in clinical genetics. As up to one-third of disease-causing mutations are thought to affect pre-mRNA splicing, it is important to accurately classify splicing mutations in patient sequencing data. Several consortia and healthcare systems have conducted large-scale patient sequencing studies, which discover novel variants faster than they can be classified.
View Article and Find Full Text PDFPredicting the effects of genetic variants on splicing is highly relevant for human genetics. We describe the framework MMSplice (modular modeling of splicing) with which we built the winning model of the CAGI5 exon skipping prediction challenge. The MMSplice modules are neural networks scoring exon, intron, and splice sites, trained on distinct large-scale genomics datasets.
View Article and Find Full Text PDFBackground: Critically ill patients with sepsis and acute respiratory distress syndrome have severely altered physiology and immune system modifications. RNA splicing is a basic molecular mechanism influenced by physiologic alterations. Immune checkpoint inhibitors, such as B and T Lymphocyte Attenuator (BTLA) have previously been shown to influence outcomes in critical illness.
View Article and Find Full Text PDF