Publications by authors named "William Falls"

Introduction: Two weeks of voluntary exercise in group-housed mice produces a reduction in anxiety-like behaviors across a number of different measures, including a reduction in the anxiety levels typically produced by the anxiogenic serotonergic drug m-chlorophenylpiperazine (mCPP), an agonist at 5-HT2C/2b receptors. We have previously demonstrated that 2-weeks of voluntary exercise blunted the anxiogenic effects of systemic mCPP, and we have also shown that mCPP infused into the bed nucleus of the stria terminalis (BNST) is anxiogenic. Here we follow up on these reports.

View Article and Find Full Text PDF

Recent reports demonstrate that DNA damage is induced, and rapidly repaired, in circuits activated by experience. Moreover, stress hormones are known to slow DNA repair, suggesting that prolonged stress may result in persistent DNA damage. Prolonged stress is known to negatively impact physical and mental health; however, DNA damage as a factor in stress pathology has only begun to be explored.

View Article and Find Full Text PDF

GSK3β plays an essential role in promoting cell death and is emerging as a potential target for neurological diseases. Understanding the mechanisms that control neuronal GSK3β is critical. A ubiquitous mechanism to repress GSK3β involves Akt-mediated phosphorylation of Ser.

View Article and Find Full Text PDF

Chronic or repeated exposure to stressful stimuli can result in several maladaptive consequences, including increased anxiety-like behaviors and altered peptide expression in anxiety-related brain structures. Among these structures, the bed nucleus of the stria terminalis (BNST) has been implicated in emotional behaviors as well as regulation of hypothalamic-pituitary-adrenal (HPA) axis activity. In male rodents, chronic variate stress (CVS) has been shown to increase BNST pituitary adenylate cyclase activating polypeptide (PACAP) and its cognate PAC1 receptor transcript, and BNST PACAP signaling may mediate the maladaptive changes associated with chronic stress.

View Article and Find Full Text PDF

The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release.

View Article and Find Full Text PDF

It is well known that a velocity perturbation can travel through a mass spring chain with strongly nonlinear interactions as a solitary and antisolitary wave pair. In recent years, nonlinear wave propagation in 2D structures have also been explored. Here we first consider the propagation of such a velocity perturbation for cases where the system has a 2D "Y"-shaped structure.

View Article and Find Full Text PDF

Chronic or repeated stressor exposure can induce a number of maladaptive behavioral and physiological consequences and among limbic structures, the bed nucleus of the stria terminalis (BNST) has been implicated in the integration and interpretation of stress responses. Previous work has demonstrated that chronic variate stress (CVS) exposure in rodents increases BNST pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) and PAC1 receptor (Adcyap1r1) transcript expression, and that acute BNST PACAP injections can stimulate anxiety-like behavior. Here we show that chronic stress increases PACAP expression selectively in the oval nucleus of the dorsolateral BNST in patterns distinct from those for corticotropin releasing hormone (CRH).

View Article and Find Full Text PDF

Single-nucleotide polymorphisms (SNPs) in the genes for pituitary adenylyl cyclase-activating peptide (PACAP) and the PAC1 receptor have been associated with stress-related psychiatric disorders. Although, from recent work, we have argued that stress-induced PACAP expression in the bed nucleus of the stria terminalis (BNST) may mediate stress-related psychopathology, it is unclear whether stress-induced increases in BNST PACAP expression require acute or repeated stressor exposure and whether increased BNST PACAP expression is related to stress-induced increases in circulating glucocorticoids. In the current work, we have used real-time quantitative polymerase chain reaction (qPCR) to assess transcript expression in brain punches from rats after stressor exposure paradigms or corticosterone injection.

View Article and Find Full Text PDF

Exercise promotes stress resistance and is associated with reduced anxiety and reduced depression in both humans and in animal models. Despite the fact that dysfunction within the hypothalamic pituitary adrenal (HPA) axis is strongly linked to both anxiety and depressive disorders, the evidence is mixed as to how exercise alters the function of the HPA axis. Here we demonstrate that 4 weeks of voluntary wheel running was anxiolytic in C57BL/6J mice and resulted in a shorter time to peak corticosterone (CORT) and a more rapid decay of CORT following restraint stress.

View Article and Find Full Text PDF

Recent reports demonstrate that the beneficial effects of voluntary exercise may be sensitive to stress prior to and during the wheel access period. Here, a variate stress procedure is used with socially isolated mice for 7 days prior to the introduction of running wheels to assess the impact of prior and concurrent stress on the anxiolytic effect of exercise. Following stress exposure, functioning or nonfunctioning running wheels were introduced into stressed and unstressed group-housed control cages.

View Article and Find Full Text PDF

Exercise has been shown to reduce anxiety in both humans and animals. To date, there are few, if any studies that examine the effect of stress on self-selected exercise using an animal model. This study examined the effect of acute stress on wheel-running distance in mice.

View Article and Find Full Text PDF

Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucleus of the amygdala as critical structures mediating fear- and anxiety-like behavior in both humans and animals.

View Article and Find Full Text PDF

Exercise is associated with improved cognitive function in humans as well as improved learning across a range of tasks in rodents. Although these studies provide a strong link between exercise and learning, to date studies have largely focused on tasks that principally involve the hippocampus. However, exercise has been shown to produce alterations in other brain areas suggesting that the cognitive enhancing effects of exercise may be more general.

View Article and Find Full Text PDF

Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC(1) receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC(1) receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei.

View Article and Find Full Text PDF

The present experiments assessed the necessity of central CRF in reinstatement of extinguished fear. Using the fear-potentiated startle procedure, rats were given light-shock pairings (fear conditioning) followed by light-alone extinction training. Rats were then given unsignaled shocks to reinstate fear to the light conditioned stimulus (CS).

View Article and Find Full Text PDF

Voluntary exercise has been associated with reduced anxiety across several animal models. Manipulation of central 5-HT can alter anxiety-like behaviors and administration of the 5-HT agonist metachlorophenylpiperazine (mCPP) increases anxiety in rodents and humans. To examine whether the anxiolytic effect of exercise is associated with an alteration in 5-HT systems, we examined the anxiogenic effect of mCPP in exercising and nonexercising mice.

View Article and Find Full Text PDF

Voluntary wheel running in rodents is associated with a number of adaptive behavioral and physiological effects including improved learning, reduction in stress-associated behaviors, neurogenesis, angiogenesis, increases in neurotrophic factors, and changes in several signaling molecules. Exercise has also been reported to reduce anxiety-like behaviors. However, other studies have failed to find an anxiolytic effect of exercise.

View Article and Find Full Text PDF

There is considerable interest in examining the genes that may contribute to anxiety. We examined the function of ERK/MAPK in the acquisition of conditioned fear, as measured by fear-potentiated startle (FPS) in mice as a model for anticipatory anxiety in humans. We characterized the following for the first time in the mouse: (1) the expression of the ERK/MAPK signaling pathway components at the protein level in the lateral amygdala (LA); (2) the time course of activation of phospho-activated MAPK in the LA after fear conditioning; (3) if pharmacological inhibition of pMAPK could modulate the acquisition of FPS; (4) the cell-type specificity of pMAPK in the LA after fear conditioning.

View Article and Find Full Text PDF
Fear-potentiated startle in mice.

Curr Protoc Neurosci

August 2002

Pavlovian fear conditioning is frequently used to assess the behavioral, physiological, genetic and molecular correlates of learning and memory. In the typical Pavlovian conditioned fear procedure a neutral stimulus, such as a tone, is paired with a mildly aversive stimulus such as a foot shock. The tone conditioned stimulus (CS) comes to elicit a variety of behaviors that are indicative of learned fear.

View Article and Find Full Text PDF

We have used genetically engineered NMDA receptor NR1+/- mice in which the gene for the NR1 subunit was modified in such a way that these mice express only 50% of the NR1 subunit. The NR1 subunit is necessary for NMDA receptor channel function. We investigated the effects of reduced NMDA receptor function on cell proliferation in the hippocampus and the amygdala of the adult mouse brain.

View Article and Find Full Text PDF

We have recently planned and taught an advanced undergraduate seminar at our respective institutions that uses a unique mechanism to explore topics that are on the cutting edge of neuroscience. The course material is centered on the topics of presentations scheduled for the Annual Meeting of the Society for Neuroscience held each fall. The instructor and students (∼15) select several topics that are the subject of special lectures, panels, and keynote addresses included in the Program for the Annual Meeting.

View Article and Find Full Text PDF

The purpose of this study was to examine the effects of lesions within the auditory system in an effort to disrupt the processing of the noise stimulus conditioned to inhibit fear. To accomplish this, three experiments were conducted in which rats were first given feature-negative discrimination training in which a noise was conditioned to inhibit fear to a light that signals danger. Following training, rats were given lesions of the medial geniculate body (MGB), auditory thalamus (ADT), or auditory cortex (CTX).

View Article and Find Full Text PDF

The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the pre- or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle.

View Article and Find Full Text PDF

The ability to discriminate between potential dangers and recall those stimuli is essential for survival. This emotional learning requires the involvement of higher brain structures, including the amygdala, hippocampus and related cortical structures. Long-term changes in synaptic transmission and structure are important for the establishment and consolidation of fear memory.

View Article and Find Full Text PDF

While a number of studies have examined the acquisition and expression of conditioned fear in inbred mice, very few have examined extinction of conditioned fear in inbred mice and few attempts have been made to compare extinction learning between inbred strains. Because inbred strains differ in a number of physiological and biochemical variables, differences in extinction learning may provide insight into the genetic influence of extinction learning. The purpose of this study was to examine extinction and renewal of conditioned fear in two common inbred strains of mice.

View Article and Find Full Text PDF