Objectives: Ultrasound is useful in predicting arteriovenous fistula (AVF) maturation, which is essential for hemodialysis in end-stage renal disease patients. We developed ultrasound software that measures circumferential vessel wall strain (distensibility) using conventional ultrasound Digital Imaging and Communications in Medicine (DICOM) data. We evaluated user-induced variability in measurement of arterial wall distensibility and upon finding considerable variation we developed and tested 2 methods for semiautomated measurement.
View Article and Find Full Text PDFBackground: The arteriovenous fistula (AVF) is the preferred vascular access for End Stage Renal Disease, having superior patency and lower infection risks than prosthetic graft and catheter access. When AVF dysfunction or delayed maturation does occur, the gold standard for diagnosis is the fistula angiogram (a.k.
View Article and Find Full Text PDFDialysis vascular access remains vitally important to maintain life and functional capacity with end stage renal disease. Angioplasty is an integral part of maintaining dialysis access function and patency. To understand the effect of angioplasty balloon dilation on vascular wall mechanics, we conducted a clinical study to evaluate the elastic modulus of the anastomosis in five subjects with anastomosis stenoses, before and after six angioplasty procedures, using B-mode ultrasound DICOM data.
View Article and Find Full Text PDFThis study presents an edge detection and speckle tracking (EDST) based algorithm to calculate distensibility as percentage of change of vessel diameter during cardiac cycles. Canny edge detector, Vandermonde matrix representation, Kanade Lucas Tomasi algorithm with pyramidal segmentation, and penalized least squares technique identifies the vessel lumen edge, track the vessel diameter, detrend the signal and find peaks and valleys when the vessel is fully distended or contracted. An upper extremity artery from 10 patients underwent an ultrasound examination as part of preoperative evaluation before arteriovenous fistula surgery.
View Article and Find Full Text PDFMaintaining dialysis vascular access is a source of considerable morbidity in patients with end-stage renal disease (ESRD). High-resolution radiofrequency (RF) ultrasound vascular strain imaging has been applied experimentally in the vascular access setting to assist in diagnosis and management. Unfortunately, high-resolution RF data are not routinely accessible to clinicians.
View Article and Find Full Text PDFIntroduction: Dialysis vascular access, preferably an autogenous arteriovenous fistula, remains an end stage renal disease (ESRD) patient's lifeline providing a means of connecting the patient to the dialysis machine. Once an access is created, the current gold standard of care for maintenance of vascular access is angiography and angioplasty to treat stenosis. While point of care 2D ultrasound has been used to detect access problems, we sought to reproduce angiographic results comparable to the gold standard angiogram (fistulogram) using ultrasound data acquired from a conventional 2D ultrasound scanner.
View Article and Find Full Text PDFWe used novel open source software, based on an ultrasound speckle tracking algorithm, to examine the distensibility of the vessel wall of the inflow artery, anastomosis, and outflow vein before and after two procedures. An 83-year-old white man with a poorly maturing radio-cephalic fistula received an angioplasty at the anastomosis followed by branch ligation 28 days later. Duplex Doppler measurements corroborated the blood flow related changes anticipated from the interventions.
View Article and Find Full Text PDFLung ultrasound comets are "comet-tail" artifacts appearing in lung ultrasound images. They are particularly useful in detecting several lung pathologies and may indicate the amount of extravascular lung water. However, the comets are not always well defined and large variations in the counting results exist between observers.
View Article and Find Full Text PDFPurpose:: Autogenous arteriovenous fistulas are the preferred access for hemodialysis. Yet when created, fistulas often fail to mature, requiring surgical or radiologic interventions before their use. This pilot study measures the vascular wall elasticity and flow gradient using an open-source ultrasound software program designed to aid in assessing fistula maturation.
View Article and Find Full Text PDFVascular access is essential for hemodialysis patients. The mature native arteriovenous fistula has been the preferred vascular access for hemodialysis, because it has greater longevity than synthetic grafts. However, once surgically created, fistulas often fail to develop (mature) into viable points of vascular access, requiring surgical or radiologic interventions before their use.
View Article and Find Full Text PDFManagement of fluid overload in patients with end-stage renal disease represents a unique challenge to clinical practice because of the lack of accurate and objective measurement methods. Currently, peripheral edema is subjectively assessed by palpation of the patient's extremities, ostensibly a qualitative indication of tissue viscoelastic properties. New robust quantitative estimates of tissue fluid content would allow clinicians to better guide treatment, minimizing reactive treatment decision making.
View Article and Find Full Text PDFBackground/aims: Recently, ultrasound signals termed 'lung water comets' associated with pulmonary edema have been correlated with adverse clinical events in dialysis patients. These comets fluctuate substantially during the ultrasound exam highlighting the need for objective quantitative measurement methods.
Methods: We developed an image-processing algorithm for the detection and quantification of lung comets.
This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods.
View Article and Find Full Text PDFRenal disease is epidemic in the United States with approximately 8 × 10 people having chronic kidney disease. Renal biopsies are widely used to provide essential diagnostic information to physicians. However, the risk of bleeding complications possibly leading to life-threatening situations results in the contra-indication of biopsy in certain patient populations.
View Article and Find Full Text PDFThis study measures the vascular wall shear rate at the vessel edge using decorrelation based ultrasound speckle tracking. Results for nine healthy and eight renal disease subjects are presented. Additionally, the vascular wall shear rate and circumferential strain during physiologic pressure, pressure equalization and hyperemia are compared for five healthy and three renal disease subjects.
View Article and Find Full Text PDFBackground: Ultrasound elasticity imaging provides biomechanical and elastic properties of vascular tissue, with the potential to distinguish between tissue motion and tissue strain. To validate the ability of ultrasound elasticity imaging to predict structurally defined physical changes in tissue, strain measurement patterns during angioplasty in four bovine carotid artery pathology samples were compared to the measured physical characteristics of the tissue specimens.
Methods: Using computational image-processing techniques, the circumferences of each bovine artery specimen were obtained from ultrasound and pathologic data.
Background: The nonlinear mechanical properties of internal organs and tissues may be measured with unparalleled precision using ultrasound imaging with phase-sensitive speckle tracking. The many potential applications of this important noninvasive diagnostic approach include measurement of arterial stiffness, which is associated with numerous major disease processes. The accuracy of previous ultrasound measurements of arterial stiffness and vascular elasticity has been limited by the relatively low strain of nonlinear structures under normal physiologic pressure and the measurement assumption that the effect of the surrounding tissue modulus might be ignored in both physiologic and pressure equalized conditions.
View Article and Find Full Text PDFUltrasonography for the noninvasive assessment of tissue properties has enjoyed widespread success. With the growing emphasis in recent years on arteriovenous fistulae (AVFs) for dialysis vascular access in patients with end-stage renal disease, and on reducing AVF failures, there is increasing interest in ultrasound for the preoperative evaluation of the mechanical and elastic properties of arteries and veins. This study used high-resolution ultrasound with phase-sensitive speckle tracking to obtain in vivo vein elasticity measurements during dilation.
View Article and Find Full Text PDFUltrasound strain imaging using 2-D speckle tracking has been proposed to quantitatively assess changes in myocardial contractility caused by ischemia. Its performance must be demonstrated in a controlled model system as a step toward routine clinical application. In this study, a well-controlled 2-D cardiac elasticity imaging technique was developed using two coplanar and orthogonal linear probes simultaneously imaging an isolated retroperfused rabbit heart.
View Article and Find Full Text PDFAccurate, noninvasive characterization of arterial wall mechanics and detection of fibrotic vascular lesions could vastly improve the ability to predict patient response to local treatments such as angioplasty. Current imaging and other techniques for determining wall compliance rely on imprecise or indirect estimates of wall motion. This study used high-resolution ultrasound imaging with phase-sensitive speckle tracking to obtain detailed and direct measurements of arterial stiffness in two subjects with dialysis fistula dysfunction.
View Article and Find Full Text PDFBackground: End-stage renal disease (ESRD) confers a large health-care burden for the United States, and the morbidity associated with vascular access failure has stimulated research into detection of vascular access stenosis and low flow prior to thrombosis. We present data investigating the possibility of using differential pressure (DeltaP) monitoring to estimate access flow (Q) for dialysis access monitoring, with the goal of utilizing micro-electro-mechanical systems (MEMS) pressure sensors integrated within the shaft of dialysis needles.
Methods: A model of the arteriovenous graft fluid circuit was used to study the relationship between Q and the DeltaP between two dialysis needles placed 2.
We report the use of high-resolution, phase-sensitive ultrasound speckle tracking to measure the local vessel-wall strain in two subjects with artery-vein bypass grafts. In addition, we combined this technique with a free-hand pressure equalization procedure to elucidate the nonlinear effects of blood pressure on vessel wall compliance. While conventional ultrasound imaging can be used to elucidate the mechanical properties of tissues within the body, it is constrained by comparatively lower resolution and inferential, rather than direct, measurements of strain and by the small strain normally produced under physiological pressure in highly nonlinear structures such as arteries.
View Article and Find Full Text PDFWe report a case of occlusion of a graft related to residual thrombus collection at the inflow in a blind pouch formed by conversion of a previous brachial cephalic fistula to a graft. The thrombus was unable to be dislodged by conventional methods with the use of a Fogarty balloon and maceration of thrombus with angioplasty. A covered stent was placed at the inflow segment over this thrombus in order to restore the flow through the graft.
View Article and Find Full Text PDFBackground: There is increasing emphasis on optimizing fistula use for end-stage renal disease patients. Although early referral and strategies for vein preservation are clearly important, imaging modalities have assumed an ever-increasing role in preoperative vascular access assessment and management.
Methods/results: Review of available literature demonstrates angiography and ultrasonography provide anatomic information useful in diagnostic decision-making in many clinical settings.
Objective: The purpose of this study was to assess the ability of sonographic elasticity imaging to distinguish acute from chronic deep venous thrombosis (DVT).
Methods: Fifty-four patients, 26 with acute DVT and 28 with chronic DVT, were studied, and we analyzed the data in 46 patients, 23 with acute (mean age, 5.7 days) and 23 with chronic (>8 months) DVT.