Polyolefins represent a high-volume class of polymers prized for their attractive thermomechanical properties, but the lack of chemical functionality on polyolefins makes them inadequate for many high-performance engineering applications. We report a metal-free postpolymerization modification approach to impart functionality onto branched polyolefins without the deleterious chain-coupling or chain-scission side reactions inherent to previous methods. The identification of conditions for thermally initiated polyolefin C-H functionalization combined with the development of new reagents enabled the addition of xanthates, trithiocarbonates, and dithiocarbamates to a variety of commercially available branched polyolefins.
View Article and Find Full Text PDFDespite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control.
View Article and Find Full Text PDFFreestanding, single-component dielectric actuators are designed based on bottlebrush elastomers that enable giant reversible strokes at relatively low electric fields and altogether avoid preactuation mechanical manipulation. This materials design platform allows for independent tuning of actuator rigidity and elasticity over broad ranges without changing chemical composition, which opens new opportunities in soft-matter robotics.
View Article and Find Full Text PDFPolymer gels are the only viable class of synthetic materials with a Young's modulus below 100 kPa conforming to biological applications, yet those gel properties require a solvent fraction. The presence of a solvent can lead to phase separation, evaporation and leakage on deformation, diminishing gel elasticity and eliciting inflammatory responses in any surrounding tissues. Here, we report solvent-free, supersoft and superelastic polymer melts and networks prepared from bottlebrush macromolecules.
View Article and Find Full Text PDF