Publications by authors named "William F Kiesman"

Density functional theory (DFT) calculations afforded insight into the origin of the experimentally observed reaction rate acceleration (≥500 fold) and enantioselectivity (≥99 % ee) of 1,1'-bi-2-naphthol- (BINOL-) catalyzed three-component Petasis reactions . BINOL accelerates the rate determining step by forming a B chelate, which involves the loss of water from the hemiaminal moiety to generate an iminium intermediate. Subsequent vinyl group transfer from B to the iminium carbon affords the enantiomerically enriched product and a cyclic trigonal B(III)BINOL complex, which rapidly releases the BINOL allowing it to re-enter the catalytic cycle.

View Article and Find Full Text PDF

Oligonucleotide drugs show promise to treat diseases afflicting millions of people. To address the need to manufacture large quantities of oligonucleotide therapeutics, the novel convergent liquid-phase synthesis has been developed for an 18-mer oligonucleotide drug candidate. Fragments containing tetra- and pentamers were synthesized and assembled into the 18-mer without column chromatography, which had a similar impurity profile to material made by standard solid-phase oligonucleotide synthesis.

View Article and Find Full Text PDF

The designation of starting materials (SMs) for pharmaceuticals has been a topic of great interest and debate since the first ICH quality guidance was published. The increase in the number and variety of commercialized oligonucleotides (antisense oligonucleotides-ASOs, small interfering RNAs-siRNAs, etc.) in recent years has reignited dialogue on this topic because of the unique complexity of the monomeric nucleotides and other contributory materials used to manufacture oligonucleotides.

View Article and Find Full Text PDF

Oligonucleotides containing phosphorothioate (PS) linkages have recently demonstrated significant clinical utility. PS oligonucleotides are manufactured via a solid-phase chain elongation process in which a four-reaction cycle consisting of detritylation, coupling, sulfurization, and failure sequence capping with AcO is repeated. In the capping step, uncoupled sequences are acetylated at the 5'-OH to stop the chain growth and control the levels of deletion, or ( n-1), impurities.

View Article and Find Full Text PDF

Binaphthol-catalyzed asymmetric Petasis reactions of salicylaldehydes with dibutyl vinylboronates and secondary amines in the presence of 4 Å molecular sieves (MS) afforded products with up to 99% ee in isolated yields of 39-94%. The 99% ee of the product indicated that the reaction by the binaphthol-catalyzed pathway was roughly 500 times faster than the uncatalyzed pathway. NMR experiments ((1)H and (11)B) showed that the amine component played a role in triggering the reaction between the binaphthol catalyst and the vinylboronate in the catalytic reaction sequence.

View Article and Find Full Text PDF

Mild reaction conditions for Petasis reactions of substituted salicylaldehydes with various amines and arylboronic acids in the presence of molecular sieves were developed. Molecular sieves (MS) significantly accelerated the reaction rates and drove the reactions to high conversions. The conditions were applied to the synthesis of the core structure of BIIB042, a γ-secretase modulator, without stereochemical erosion of a stereogenic center in the salicylaldehyde intermediate.

View Article and Find Full Text PDF

Intense efforts of many pharmaceutical companies and academicians in the A(1) adenosine receptor (AR) field have led to the discovery of clinical candidates that are antagonists, agonists, and allosteric enhancers. The A(1)AR antagonists currently in clinical development are KW3902, BG9928, and SLV320. All three have high affinity for the human (h) A(1)AR subtype (hA(1) K (i) < 10 nM), > 200-fold selectivity over the hA(2A) subtype, and demonstrate renal protective effects in multiple animal models of disease and pharmacologic effects in human subjects.

View Article and Find Full Text PDF

Novel tricyclic imidazoline antagonists of the adenosine A1 receptor are described. For key compounds, the selectivity level over other adenosine receptor subtypes is examined along with their in vivo effects in a rat diuresis model. Compound 14, the (R)-isomer of 7,8-dihydro-8-ethyl-2-(4-bicyclo[2.

View Article and Find Full Text PDF

In the search for a selective adenosine A1 receptor antagonist with greater aqueous solubility than the compounds currently in clinical trials as diuretics, a series of 1,4-substituted 8-cyclohexyl and 8-bicyclo[2.2.2]octylxanthines were investigated.

View Article and Find Full Text PDF

During the search for second-generation adenosine A(1) receptor antagonist alternatives to the clinical candidate 8-(3-oxa-tricyclo[3.2.1.

View Article and Find Full Text PDF

A novel [1,2,4]triazolo[1,5-a]pyrazine core was synthesized and coupled with terminal acetylenes. The structure-activity relationship of the alkynes from this novel template was studied for their in vitro and in vivo adenosine A(2A) receptor antagonism. Selected compounds from this series were shown to have potent in vitro and in vivo activities against adenosine A(2A) receptor.

View Article and Find Full Text PDF

Iodoacetic acid, an effective aryl radical trapping agent, was employed to investigate the reactive intermediates in several hydrodediazoniations. Isolation of an aryl iodide constitutes a positive result in the test for aryl radicals. Equally as important is the lower yield of the reduction product when the trap diverts radicals from their usual reaction path.

View Article and Find Full Text PDF