Tune-out wavelengths measured with an atom interferometer are sensitive to laboratory rotation rates because of the Sagnac effect, vector polarizability, and dispersion compensation. We observed shifts in measured tune-out wavelengths as large as 213 pm with a potassium atom beam interferometer, and we explore how these shifts can be used for an atom interferometer gyroscope.
View Article and Find Full Text PDFLight at a magic-zero wavelength causes a zero energy shift for an atom. We measured the longest magic-zero wavelength for ground state potassium atoms to be λ(zero)=768.9712(15) nm, and we show how this measurement provides an improved experimental benchmark for atomic structure calculations.
View Article and Find Full Text PDFvan der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.
View Article and Find Full Text PDFWe measured ratios of van der Waals potential coefficients (C3) for different atoms (Li, Na, K, and Rb) interacting with the same surface by studying atom diffraction from a nanograting. These measurements are a sensitive test of atomic structure calculations because C3 ratios are strongly influenced by core electrons and only weakly influenced by the permittivity and geometry of the surface. Our measurement uncertainty of 2% in the ratio C(3)(K)/C(3)(Na) is close to the uncertainty of the best theoretical predictions, and some of these predictions are inconsistent with our measurement.
View Article and Find Full Text PDF