We present an empirical study of methods for estimating the location parameter of the lognormal distribution. Our results identify the best order statistic to use, and indicate that using the best order statistic instead of the median may lead to less frequent incorrect rejection of the lognormal model, more accurate critical value estimates, and higher goodness-of-fit. Using simulation data, we constructed and compared two models for identifying the best order statistic, one based on conventional nonlinear regression and the other using a data mining/machine learning technique.
View Article and Find Full Text PDFBackground: Variability inherent in the duration of surgical procedures complicates surgical scheduling. Modeling the duration and variability of surgeries might improve time estimates. Accurate time estimates are important operationally to improve utilization, reduce costs, and identify surgeries that might be considered outliers.
View Article and Find Full Text PDFThis research describes a synthetic data mining approach to identifying diagnostic (ICD-9) and procedure (CPT) code usage patterns in two US. hospitals, with the goal of determining the adequacy and effectiveness of the current coding classification systems. We combine relative frequency measurements with measures of industry concentration borrowed from industrial economics in order to (1) ascertain the extent to which physicians utilize the available codes in classifying patients and (2) discover the factors that impinge on code usage.
View Article and Find Full Text PDF