Publications by authors named "William E Boxford"

Multiply charged anions (MCAs) represent exotic, highly energetic species in the gas-phase due to their propensity to undergo unimolecular decay via electron loss or ionic fragmentation. There is considerable fundamental interest in these systems since they display novel potential energy surfaces that are characterized by Coulomb barriers. Over recent years, considerable progress has been made in understanding the factors that affect the stability, decay pathways and reactivity of gas-phase MCAs, mainly as a result of the application of electrospray ionization as a generic technique for transferring solution-phase MCAs into the gas-phase for detailed characterization.

View Article and Find Full Text PDF

We report the first low-energy collisional excitation measurements and density functional theory calculations to characterize the ground state potential energy surfaces of contact ion-pair complexes that contain multiply charged anions (MCAs). Excitation of K+.Pt(CN)(4) (2-) and K+.

View Article and Find Full Text PDF

The intrinsic gas-phase stability of the IrCl(6)(3-) trianion and its microsolvated clusters, IrCl(6)(3-).(H(2)O)(n) n = 1-10, have been investigated using density functional theory (DFT) calculations. Although IrCl(6)(3-) is known to exist as a stable complex ion in bulk solutions, our calculations indicate that the bare trianion is metastable with respect to decay via both electron detachment and ionic fragmentation.

View Article and Find Full Text PDF

Multiply charged anions (MCAs) represent highly energetic species in the gas phase but can be stabilized through formation of molecular clusters with solvent molecules or counterions. We explore the intramolecular stabilization of excess negative charge in gas-phase MCAs by probing the intrinsic stability of the [adenosine 5'-triphosphate-2H](2-) ([ATP-2H](2-)), [adenosine 5'-diphosphate-2H](2-) ([ADP-2H](2-)), and H(3)P(3)O(10)(2-) dianions and their protonated monoanionic analogues. The relative activation barriers for decay of the dianions via electron detachment or ionic fragmentation are investigated using resonance excitation of ions isolated within a quadrupole trap.

View Article and Find Full Text PDF