Publications by authors named "William Dudefoi"

Article Synopsis
  • Tire and road wear particles (TRWP) contribute significantly to environmental polymer pollution, including harmful organic chemicals from tires.
  • The study examined how easily these chemicals dissolve and are absorbed by fish when they ingest tire tread using a digestion model.
  • Results indicated that a range of tire-associated compounds becomes bioaccessible in fish, highlighting the need for further investigation into their potential toxic effects and how they accumulate in aquatic organisms.
View Article and Find Full Text PDF

Tire and road wear particles (TRWP) have been shown to represent a large part of anthropogenic particles released into the environment. Nevertheless, the potential ecological risk of TRWP in the different environmental compartments and their potential toxic impacts on terrestrial and aquatic organisms remain largely underinvestigated. Several heavy metals compose TRWP, including Zn, which is used as a catalyst during the vulcanization process of rubber.

View Article and Find Full Text PDF

The sorption of hydrophobic organic compounds (HOC) onto microplastics is relatively well reported in the literature, while their desorption remains poorly investigated, especially in biological fluids. The present study investigated the sorption and desorption of progesterone on polyethylene (PE), polypropylene (PP), and polystyrene (PS) microplastics. The sorption experiments showed that the equilibrium was reached in a few hours for all plastics.

View Article and Find Full Text PDF

Titanium dioxide is a food additive that has raised some concerns for humans due to the presence of nanoparticles. We were interested in knowing the fate of TiO2 particles in the gastro-intestinal tract and their potential effect on digestive enzymes. For this purpose, we analysed the behaviour of two different food grade TiO2 samples (E171) and one nano-sized TiO2 sample (P25) through a standardized static in vitro digestion protocol simulating the oral, gastric and intestinal phases with appropriate juices including enzymes.

View Article and Find Full Text PDF

Emerging research in mammalian cells suggests that ionic (AgNO) and nano silver (AgNP) can disrupt the metabolism of selenium which plays a vital role in oxidative stress control. However, the effect of silver (Ag) on selenoprotein function in fish is poorly understood. Here we evaluate the effects of AgNO and citrate coated AgNP (cit-AgNP) on selenoprotein function and oxidative stress using a fish cell line derived from the rainbow trout (Oncorhynchus mykiss) intestine (RTgutGC).

View Article and Find Full Text PDF

Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO, the estimated intakes of TiO nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed.

View Article and Find Full Text PDF

Titanium dioxide (TiO) nanoparticles (NPs) are used as an additive (E171 or INS171) in foods such as gum, candy and puddings. To address concerns about the potential hazardous effects of ingested NPs, the toxicity of these food-grade NPs was investigated with a defined model intestinal bacterial community. Each titania preparation (food-grade TiO formulations, E171-1 and E171-6a) was tested at concentrations equivalent to those found in the human intestine after sampling 1-2 pieces of gum or candy (100-250 ppm).

View Article and Find Full Text PDF

Titanium dioxide (TiO) is a transition metal oxide widely used as a white pigment in various applications, including food. Due to the classification of TiO nanoparticles by the International Agency for Research on Cancer as potentially harmful for humans by inhalation, the presence of nanoparticles in food products needed to be confirmed by a set of independent studies. Seven samples of food-grade TiO (E171) were extensively characterised for their size distribution, crystallinity and surface properties by the currently recommended methods.

View Article and Find Full Text PDF