Background: Access to salmon resources is vital to coastal brown bear (Ursus arctos) populations. Deciphering patterns of travel allowing coastal brown bears to exploit salmon resources dispersed across the landscape is critical to understanding their behavioral ecology, maintaining landscape connectivity for the species, and developing conservation strategies.
Methods: We modeled travel behavior of 51 radio-collared female Kodiak brown bears (U.
Resource tracking, where animals increase energy gain by moving to track phenological variation in resources across space, is emerging as a fundamental attribute of animal movement ecology. However, a theoretical framework to understand when and where resource tracking should occur, and how resource tracking should lead to emergent ecological patterns, is lacking. We present a framework that unites concepts from optimal foraging theory and landscape ecology, which can be used to generate and test predictions on how resource dynamics shape animal movement across taxa, systems, and scales.
View Article and Find Full Text PDFAerial surveys are often used to monitor wildlife and fish populations, but rarely are the effects on animal behavior documented. For over 30 years, the Kodiak National Wildlife Refuge has conducted low-altitude aerial surveys to assess Kodiak brown bear (Ursus arctos middendorffi) space use and demographic composition when bears are seasonally congregated near salmon spawning streams in southwestern Kodiak Island, Alaska. Salmon (Oncorhynchus spp.
View Article and Find Full Text PDFThere is growing interest in the ecological significance of phenological diversity, particularly in how spatially variable resource phenologies (i.e. resource waves) prolong foraging opportunities for mobile consumers.
View Article and Find Full Text PDFClimate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) 535:241-245]. This can cause the temporal relationships among species to change, altering the strength of interaction.
View Article and Find Full Text PDFA key constraint faced by consumers is achieving a positive energy balance in the face of temporal variation in foraging opportunities. Recent work has shown that spatial heterogeneity in resource phenology can buffer mobile consumers from this constraint by allowing them to track changes in resource availability across space. For example, salmon populations spawn asynchronously across watersheds, causing high-quality foraging opportunities to propagate across the landscape, prolonging the availability of salmon at the regional scale.
View Article and Find Full Text PDFAccurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements.
View Article and Find Full Text PDF