Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands to prolong anesthesia via targeted yet spatially restricted photoadduction of azi--propofol (aziPm), a photoreactive analog of the general anesthetic propofol.
View Article and Find Full Text PDFPurpose Of Review: This systematic review comprehensively compared balloon kyphoplasty and vertebroplasty with respect to height restoration and pain relief.
Recent Findings: PRISMA guidelines were utilized to compare balloon kyphoplasty and vertebroplasty, focusing on the primary outcome of height restoration and the secondary outcomes of pain relief and functionality. A total of 33 randomized controlled trials were included; 20 reviewed balloon kyphoplasty, 7 reviewed vertebroplasty, and 6 compared vertebroplasty to balloon kyphoplasty.
Objective: To assess contemporary trends in the National Institutes of Health (NIH) Career Development (K) Awards within the Departments of Surgery and its impact on the likelihood of achieving independent R01 grants.
Background: The NIH provides K-type Career Development Awards to nurture young clinicians toward a productive academic career, thereby maintaining a pipeline of physician-scientists. However, the impact of K awards on career trajectory of surgeons remains unclear.
Voltage-gated sodium (Na) channels control excitable cell functions. While structural investigations have revealed conformation details of different functional states, the mechanisms of both activation and slow inactivation remain unclear. Here, we identify residue T140 in the S4-S5 linker of the bacterial voltage-gated sodium channel NaChBac as critical for channel activation and drug effects on inactivation.
View Article and Find Full Text PDFBackground: The National Institutes of Health (NIH) is the primary public funding source for surgical research in the United States. Surgical oncology is a highly academic career, but NIH funding for surgical oncologists (SOs) is not well characterized.
Methods: The NIH RePORTER (Research Portfolio Online Reporting Tools Expenditures and Results) was queried to identify R01-and-equivalents grants awarded to departments of surgery (DoS) between 2008 and 2018.
The mechanisms of general anesthetics have been debated in the literature for many years and continue to be of great interest. As anesthetic molecules are notoriously difficult to study due to their low binding affinities and multitude of binding partners, it is advantageous to have additional tools to study these interactions. Fropofol is a hydroxyl to fluorine-substituted propofol analogue that is able to antagonize the actions of propofol.
View Article and Find Full Text PDFObjective: The aim of this study was to assess the contemporary trends in National Institutes of Health (NIH) grants awarded to surgical investigators, including potential disparities.
Background: The NIH remains the primary public funding source for surgical research in the United States; however, the patterns for grants and grantees are poorly understood.
Methods: NIH RePORTER was queried for new grants (R01, -03, -21) awarded to Departments of Surgery (DoS).
Agonists at the α adrenergic receptor produce sedation, increase focus, provide analgesia, and induce centrally mediated hypotension and bradycardia, yet neither their dynamic interactions with adrenergic receptors nor their modulation of neuronal circuit activity is completely understood. Photoaffinity ligands of α adrenergic agonists have the potential both to capture discrete moments of ligand-receptor interactions and to prolong naturalistic drug effects in discrete regions of tissue in vivo. We present here the synthesis and characterization of a novel α adrenergic agonist photolabel based on the imidazole medetomidine called .
View Article and Find Full Text PDFAims: Increased myofilament contractility is recognized as a crucial factor in the pathogenesis of hypertrophic cardiomyopathy (HCM). Direct myofilament desensitization might be beneficial in preventing HCM disease progression. Here, we tested whether the small molecule fropofol prevents HCM phenotype expression and disease progression by directly depressing myofilament force development.
View Article and Find Full Text PDFVoltage-gated sodium (Na) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic Na channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac.
View Article and Find Full Text PDFMicrotubule-based molecular motors mediate transport of intracellular cargo to subdomains in neurons. Previous evidence has suggested that the anesthetic propofol decreases the average run-length potential of the major anterograde transporters kinesin-1 and kinesin-2 without altering their velocity. This effect on kinesin has not been observed with other inhibitors, stimulating considerable interest in the underlying mechanism.
View Article and Find Full Text PDFGeneral anesthetics are unique in that they represent a diverse range of chemical structures. Therefore, it is not surprising that the desired and undesired molecular targets, and binding sites therein, are as equally diverse and unique. Photoaffinity labeling has proven to be a valuable strategy for the identification of anesthetic molecular targets, as well as binding sites within those targets.
View Article and Find Full Text PDFSevoflurane is a commonly used inhaled general anesthetic. Despite this, its mechanism of action remains largely elusive. Compared to other anesthetics, sevoflurane exhibits distinct functional activity.
View Article and Find Full Text PDFAnesthetic photoaffinity ligands have had an increasing presence within anesthesiology research. These ligands mimic parent general anesthetics and allow investigators to study anesthetic interactions with receptors and enzymes; identify novel targets; and determine distribution within biological systems. To date, nearly all general anesthetics used in medicine have a corresponding photoaffinity ligand represented in the literature.
View Article and Find Full Text PDFPropofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes.
View Article and Find Full Text PDFWe used a photoactive general anesthetic called meta-azi-propofol (AziPm) to test the selectivity and specificity of alkylphenol anesthetic binding in mammalian brain. Photolabeling of rat brain sections with [(3)H]AziPm revealed widespread but heterogeneous ligand distribution, with [(3)H]AziPm preferentially binding to synapse-dense areas compared to areas composed largely of cell bodies or myelin. With [(3)H]AziPm and propofol, we determined that alkylphenol general anesthetics bind selectively and specifically to multiple synaptic protein targets.
View Article and Find Full Text PDFPropofol is a widely used intravenous general anesthetic. We synthesized 2-fluoro-1,3-diisopropylbenzene, a compound that we call "fropofol", to directly assess the significance of the propofol 1-hydroxyl for pharmacologically relevant molecular recognition in vitro and for anesthetic efficacy in vivo. Compared to propofol, fropofol had a similar molecular volume and only a small increase in hydrophobicity.
View Article and Find Full Text PDFPropofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [(3)H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[(3)H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain.
View Article and Find Full Text PDFGeneral anesthetic photolabels are used to reveal molecular targets and molecular binding sites of anesthetic ligands. After identification, the relevance of anesthetic substrates or binding sites can be tested in biological systems. Halothane and photoactive analogs of isoflurane, propofol, etomidate, neurosteroids, anthracene, and long chain alcohols have been used in anesthetic photolabeling experiments.
View Article and Find Full Text PDFPropofol, an intravenous general anesthetic, produces many of its anesthetic effects in vivo by potentiating the responses of GABA type A receptors (GABAAR), members of the superfamily of pentameric ligand-gated ion channels (pLGICs) that contain anion-selective channels. Propofol also inhibits pLGICs containing cation-selective channels, including nicotinic acetylcholine receptors and GLIC, a prokaryotic proton-gated homologue from Gloeobacter violaceus . In the structure of GLIC cocrystallized with propofol at pH 4 (presumed open/desensitized states), propofol was localized to an intrasubunit pocket at the extracellular end of the transmembrane domain within the bundle of transmembrane α-helices (Nury, H, et al.
View Article and Find Full Text PDFPropofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state.
View Article and Find Full Text PDFPropofol is the most commonly used sedative-hypnotic drug for noxious procedures, yet the molecular targets underlying either its beneficial or toxic effects remain uncertain. In order to determine targets and thereby mechanisms of propofol, we have synthesized a photoactivateable analogue by substituting an alkyldiazirinyl moiety for one of the isopropyl arms but in the meta position. m-Azipropofol retains the physical, biochemical, GABA(A) receptor modulatory, and in vivo activity of propofol and photoadducts to amino acid residues in known propofol binding sites in natural proteins.
View Article and Find Full Text PDFPhotolabeling has allowed considerable progress in the understanding of anesthetic binding to proteins, of target identity, and of site localization. There are, however, few groups doing this work, so this article is an attempt to demystify the method. We will discuss the theory, method, and limitations of this useful experimental approach.
View Article and Find Full Text PDFVolatility and low-affinity hamper an ability to define molecular targets of the inhaled anesthetics. Photolabels have proven to be a useful approach in this regard, although none have closely mimicked contemporary drugs. We report here the synthesis and validation of azi-isoflurane, a compound constructed by adding a diazirinyl moiety to the methyl carbon of the commonly used general anesthetic isoflurane.
View Article and Find Full Text PDFAn atomistic model of isoflurane is constructed and calibrated to describe its conformational preferences and intermolecular interactions. The model, which is compatible with the CHARMM force field for biomolecules, is based on target quantities including bulk liquid properties, molecular conformations, and local interactions with isolated water molecules. Reference data is obtained from tabulated thermodynamic properties and high-resolution structural information from gas-phase electron diffraction, as well as DFT calculations at the B3LYP level.
View Article and Find Full Text PDF