Enterotoxigenic (ETEC) causes diarrheal illness in infants in the developing world and travelers to countries where the disease is endemic, including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion, leading to watery diarrhea. There is currently no vaccine licensed to prevent ETEC infection.
View Article and Find Full Text PDFDespite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope.
View Article and Find Full Text PDFThe murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease.
View Article and Find Full Text PDFBackground: Tick transmission of Borrelia spirochetes to humans results in significant morbidity from Lyme disease worldwide. Serum concentrations of antibodies against outer surface protein A (OspA) were shown to correlate with protection from infection with Borrelia burgdorferi, the primary cause of Lyme disease in the United States.
Methods: Mice transgenic for human immunoglobulin genes were immunized with OspA from B.
A common challenge encountered during development of high concentration monoclonal antibody formulations is preventing self-association. Depending on the antibody and its formulation, self-association can be seen as aggregation, precipitation, opalescence or phase separation. Here we report on an unusual manifestation of self-association, formation of a semi-solid gel or "gelation.
View Article and Find Full Text PDFPurpose: The goal of this study was to improve the pharmacokinetic properties and specificity of an ERBB2-targeted peptide for SPECT imaging.
Procedures: Bacteriophages (phages) displaying the ERBB2 targeting sequence, KCCYSL, flanked by additional random amino acids were used for in vivo selections in mice-bearing ERBB2-expressing MDA-MB-435 human breast xenografts. Phage-displayed peptides were evaluated for ERBB2 and cancer cell binding affinity and specificity in vitro, and one peptide was radiolabeled with (111)In-DOTA and biodistribution and SPECT imaging properties were compared to the first generation peptide, (111)In-DOTA-KCCYSL.
Size exclusion high performance liquid chromatography analysis of a human monoclonal antibody (mAb) showed the presence of a new species that eluted with a retention time between the dimeric and monomeric species of the antibody. Extensive characterization of this species, referred to as "shoulder," indicated that it was a mAb containing an extra light chain and had a molecular weight of approximately 175 kDa. The extra light chain was found to be non-covalently associated with the Fab portion of the protein.
View Article and Find Full Text PDFLibraries of phages displaying diverse peptides are typically surveyed by affinity selection, using immobilized biomolecules as selectors. After exposing the library to the selector and washing away unbound phages, the bound phages are enriched for clones displaying selector binding peptides. Those phages are recovered by release from the selector and propagation in fresh host cells.
View Article and Find Full Text PDFPhage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior.
View Article and Find Full Text PDFBackground: New therapies are needed to manage the increasing incidence, severity, and high rate of recurrence of Clostridium difficile infection.
Methods: We performed a randomized, double-blind, placebo-controlled study of two neutralizing, fully human monoclonal antibodies against C. difficile toxins A (CDA1) and B (CDB1).
Nearly all livers transplanted into hepatitis C virus (HCV)-positive patients become infected with HCV, and 10 to 25% of reinfected livers develop cirrhosis within 5 years. Neutralizing monoclonal antibody could be an effective therapy for the prevention of infection in a transplant setting. To pursue this treatment modality, we developed human monoclonal antibodies (HuMAbs) directed against the HCV E2 envelope glycoprotein and assessed the capacity of these HuMAbs to neutralize a broad panel of HCV genotypes.
View Article and Find Full Text PDFRabies is a zoonosis that results in millions of human exposures worldwide each year. Human monoclonal antibodies (HuMAbs) that neutralize rabies virus may represent one viable strategy for post-exposure prophylaxis in humans, and have many advantages over current human or equine rabies immune globulin. Transgenic mice carrying human immunoglobulin genes were used to isolate human monoclonal antibodies that neutralized rabies virus.
View Article and Find Full Text PDFClostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea, and recent outbreaks of strains with increased virulence underscore the importance of identifying novel approaches to treat and prevent relapse of Clostridium difficile-associated diarrhea (CDAD). CDAD pathology is induced by two exotoxins, toxin A and toxin B, which have been shown to be cytotoxic and, in the case of toxin A, enterotoxic. In this report we describe fully human monoclonal antibodies (HuMAbs) that neutralize these toxins and prevent disease in hamsters.
View Article and Find Full Text PDFJ Infect Dis
March 2006
Background: Immunotherapy with monoclonal antibodies (MAbs) offers safe interventions for the prevention of infection in patients after organ transplantation and for the treatment of cancers and autoimmune diseases. MAb 201 is a severe acute respiratory syndrome-associated coronavirus (SARS-CoV)-specific MAb that prevents establishment of viral replication in vitro and prevents viral replication in vivo when administered prophylactically. The efficacy of MAb 201 in the treatment of SARS was evaluated in golden Syrian hamsters, an animal model that supports SARS-CoV replication to high levels and displays severe pathological changes associated with infection, including pneumonitis and pulmonary consolidation.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome (SARS) remains a significant public health concern after the epidemic in 2003. Human monoclonal antibodies (MAbs) that neutralize SARS-associated coronavirus (SARS-CoV) could provide protection for exposed individuals.
Methods: Transgenic mice with human immunoglobulin genes were immunized with the recombinant major surface (S) glycoprotein ectodomain of SARS-CoV.
Proc Natl Acad Sci U S A
November 2004
Angiotensin-converting enzyme 2 (ACE2) is a receptor for SARS-CoV, the novel coronavirus that causes severe acute respiratory syndrome [Li, W. Moore, M. J.
View Article and Find Full Text PDFA novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane.
View Article and Find Full Text PDFCarbohydrate arrays fabricated on gold films were used to study carbohydrate-protein interactions with surface plasmon resonance (SPR) imaging. An immobilization scheme consisting of the formation of a surface disulfide bond was used to attach thiol-modified carbohydrates onto gold films and to fabricate carbohydrate arrays. The carbohydrate attachment steps were characterized using polarization modulation Fourier transform infrared reflection absorption spectroscopy; and poly(dimethylsiloxane) microchannels were used to immobilize probe compounds at discrete locations on a gold film.
View Article and Find Full Text PDFWe have developed methods for the parallel synthesis of two libraries of non-carbohydrate-based analogues of mannose on a solid support. The natural product shikimic acid was used as a key building block. The ability of the compounds to block the binding of the C-type lectin MBP-A to a mannosylated surface was assessed in a high-throughput assay.
View Article and Find Full Text PDF