Targeted polypharmacology provides an efficient method of treating diseases such as cancer with complex, multigenic causes provided that compounds with advantageous activity profiles can be discovered. Novel covalent TAK1 inhibitors were validated in cellular contexts for their ability to inhibit the TAK1 kinase and for their polypharmacology. Several inhibitors phenocopied reported TAK1 inhibitor 5Z-7-oxozaenol with comparable efficacy and complementary kinase selectivity profiles.
View Article and Find Full Text PDFGlutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH.
View Article and Find Full Text PDFDNA polymerase kappa (Polκ) bypasses planar polycyclic N2-guanine adducts in an error-free manner. Cholesterol derivatives may interact with DNA to form similarly bulky lesions. In accordance, these studies examined whether increased mutagenesis of DNA accompanies hypercholesterolemia in Polk-/- mice.
View Article and Find Full Text PDFG12 class heterotrimeric G proteins stimulate RhoA activation by RGS-RhoGEFs. However, p115RhoGEF is a GTPase Activating Protein (GAP) toward Galpha13, whereas PDZRhoGEF is not. We have characterized the interaction between the PDZRhoGEF rgRGS domain (PRG-rgRGS) and the alpha subunit of G13 and have determined crystal structures of their complexes in both the inactive state bound to GDP and the active states bound to GDP*AlF (transition state) and GTPgammaS (Michaelis complex).
View Article and Find Full Text PDFMonomeric Rho GTPases regulate cellular dynamics through remodeling of the cytoskeleton, modulation of immediate signaling pathways, and longer-term regulation of gene transcription. One family of guanine nucleotide exchange factors for Rho proteins (RhoGEFs) provides a direct pathway for regulation of RhoA by cell surface receptors coupled to heterotrimeric G proteins. Some of these RhoGEFs also contain RGS domains that can attenuate signaling by the G(12) and G(13) proteins.
View Article and Find Full Text PDFp115RhoGEF, a guanine nucleotide exchange factor (GEF) for Rho GTPase, is also a GTPase-activating protein (GAP) for G12 and G13 heterotrimeric Galpha subunits. The GAP function of p115RhoGEF resides within the N-terminal region of p115RhoGEF (the rgRGS domain), which includes a module that is structurally similar to RGS (regulators of G-protein signaling) domains. We present here the crystal structure of the rgRGS domain of p115RhoGEF in complex with a chimera of Galpha13 and Galphai1.
View Article and Find Full Text PDFStructural requirements for function of the Rho GEF (guanine nucleotide exchange factor) regulator of G protein signaling (rgRGS) domains of p115RhoGEF and homologous exchange factors differ from those of the classical RGS domains. An extensive mutagenesis analysis of the p115RhoGEF rgRGS domain was undertaken to determine its functional interface with the Galpha(13) subunit. Results indicate that there is global resemblance between the interaction surface of the rgRGS domain with Galpha(13) and the interactions of RGS4 and RGS9 with their Galpha substrates.
View Article and Find Full Text PDF