Entanglement and its propagation are central to understanding many physical properties of quantum systems. Notably, within closed quantum many-body systems, entanglement is believed to yield emergent thermodynamic behaviour. However, a universal understanding remains challenging owing to the non-integrability and computational intractability of most large-scale quantum systems.
View Article and Find Full Text PDFThe microscopic description of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation. Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study.
View Article and Find Full Text PDFNonpairwise multiqubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of molecules and combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here, we present a superconducting circuit architecture in which a coupling module mediates two-local and three-local interactions between three flux qubits by design.
View Article and Find Full Text PDFSuperconducting qubits are a promising platform for building a larger-scale quantum processor capable of solving otherwise intractable problems. In order for the processor to reach practical viability, the gate errors need to be further suppressed and remain stable for extended periods of time. With recent advances in qubit control, both single- and two-qubit gate fidelities are now in many cases limited by the coherence times of the qubits.
View Article and Find Full Text PDFDielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. Here we study the dielectric loss of hexagonal boron nitride (hBN) thin films in the microwave regime by measuring the quality factor of parallel-plate capacitors (PPCs) made of NbSe-hBN-NbSe heterostructures integrated into superconducting circuits. The extracted microwave loss tangent of hBN is bounded to be at most in the mid-10 range in the low-temperature, single-photon regime.
View Article and Find Full Text PDFFor the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary research endeavour connecting these same areas and holds burgeoning commercial promise. Although quantum physics dictates the behaviour of nanoscale objects, quantum coherence, which is central to quantum information, communication and sensing, has not played an explicit role in much of nanoscience.
View Article and Find Full Text PDFSystem noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFTechnologies that rely on quantum bits (qubits) require long coherence times and high-fidelity operations. Superconducting qubits are one of the leading platforms for achieving these objectives. However, the coherence of superconducting qubits is affected by the breaking of Cooper pairs of electrons.
View Article and Find Full Text PDFModels of light-matter interactions in quantum electrodynamics typically invoke the dipole approximation, in which atoms are treated as point-like objects when compared to the wavelength of the electromagnetic modes with which they interact. However, when the ratio between the size of the atom and the mode wavelength is increased, the dipole approximation no longer holds and the atom is referred to as a 'giant atom'. So far, experimental studies with solid-state devices in the giant-atom regime have been limited to superconducting qubits that couple to short-wavelength surface acoustic waves, probing the properties of the atom at only a single frequency.
View Article and Find Full Text PDFQuantum annealing is a computing paradigm that has the ambitious goal of efficiently solving large-scale combinatorial optimization problems of practical importance. However, many challenges have yet to be overcome before this goal can be reached. This perspectives article first gives a brief introduction to the concept of quantum annealing, and then highlights new pathways that may clear the way towards feasible and large scale quantum annealing.
View Article and Find Full Text PDFAccurate characterization of the noise influencing a quantum system of interest has far-reaching implications across quantum science, ranging from microscopic modeling of decoherence dynamics to noise-optimized quantum control. While the assumption that noise obeys Gaussian statistics is commonly employed, noise is generically non-Gaussian in nature. In particular, the Gaussian approximation breaks down whenever a qubit is strongly coupled to discrete noise sources or has a non-linear response to the environmental degrees of freedom.
View Article and Find Full Text PDFQuantum coherence and control is foundational to the science and engineering of quantum systems. In van der Waals materials, the collective coherent behaviour of carriers has been probed successfully by transport measurements. However, temporal coherence and control, as exemplified by manipulating a single quantum degree of freedom, remains to be verified.
View Article and Find Full Text PDFIn the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the ac Stark effect. These unwanted photons originate from a variety of sources, such as thermal radiation, leftover measurement photons, and cross talk. Using a capacitively shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry.
View Article and Find Full Text PDFDynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation.
View Article and Find Full Text PDFThe scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad-frequency tunability, strong anharmonicity, high reproducibility and relaxation times in excess of 40 μs at its flux-insensitive point. Qubit relaxation times T across 22 qubits are consistently matched with a single model involving resonator loss, ohmic charge noise and 1/f-flux noise, a noise source previously considered primarily in the context of dephasing.
View Article and Find Full Text PDFSingle-photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here we demonstrate the detection of a single microwave photon propagating through a waveguide.
View Article and Find Full Text PDFWe show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem).
View Article and Find Full Text PDFWe present measurements of coherence and successive decay dynamics of higher energy levels of a superconducting transmon qubit. By applying consecutive π pulses for each sequential transition frequency, we excite the qubit from the ground state up to its fourth excited level and characterize the decay and coherence of each state. We find the decay to proceed mainly sequentially, with relaxation times in excess of 20 μs for all transitions.
View Article and Find Full Text PDFGate operations in a quantum information processor are generally realized by tailoring specific periods of free and driven evolution of a quantum system. Unwanted environmental noise, which may in principle be distinct during these two periods, acts to decohere the system and increase the gate error rate. Although there has been significant progress characterizing noise processes during free evolution, the corresponding driven-evolution case is more challenging as the noise being probed is also extant during the characterization protocol.
View Article and Find Full Text PDFIn the presence of time-reversal symmetry, quantum interference gives strong corrections to the electric conductivity of disordered systems. The self-interference of an electron wave function traveling time-reversed paths leads to effects such as weak localization and universal conductance fluctuations. Here, we investigate the effects of broken time-reversal symmetry in a driven artificial two-level system.
View Article and Find Full Text PDFWe present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative π pulses, we amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to rotate around an axis perpendicular to the intended rotation axis. Measuring these rotations as a function of pulse period allows us to reconstruct the shape of the microwave pulse arriving at the sample.
View Article and Find Full Text PDF