In this study, a folate targeted cyclodextrin (CD) nanoparticle was prepared by co-formulating CD.siRNA complexes with DSPE-PEG-folate to target the prostate specific membrane antigen (PSMA). Targeted formulations showed increased uptake, relative to untargeted controls, in two prostate cancer cell lines expressing PSMA (VCaP and LNCaP).
View Article and Find Full Text PDFROS (reactive oxygen species) have long been regarded as a series of destructive molecules that have a detrimental effect on cell homoeostasis. In support of this are the myriad antioxidant defence systems nearly all eukaryotic cells have that are designed to keep the levels of ROS in check. However, research data emerging over the last decade have demonstrated that ROS can influence a range of cellular events in a manner similar to that seen for traditional second messenger molecules such as cAMP.
View Article and Find Full Text PDFConstitutive expression of the Bcr-Abl kinase in Chronic Myelogenous Leukaemia (CML) is known to produce elevated levels of Reactive Oxygen Species (ROS) which can enhance cell survival as well as generate genomic instability. Our laboratory has previously demonstrated that NADPH oxidase (Nox) activity contributes to intracellular-ROS levels in Bcr-Abl-positive cells, while inducing increased pro-survival signalling through the PI3K/Akt pathway. How Bcr-Abl signalling regulates Nox activity still remains to be elucidated.
View Article and Find Full Text PDFSignificance: Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light.
View Article and Find Full Text PDFChronic myelogenous leukemia (CML) is a myeloproliferative disorder characterized at the molecular level by the expression of Bcr-Abl, a chimeric protein with deregulated tyrosine kinase activity. The protein-tyrosine phosphatase 1B (PTP1B) is up-regulated in Bcr-Abl-expressing cells, suggesting a regulatory link between the two proteins. To investigate the interplay between these two proteins, we inhibited the activity of PTP1B in Bcr-Abl-expressing TonB.
View Article and Find Full Text PDF