Publications by authors named "William D Bradford"

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity.

View Article and Find Full Text PDF
Article Synopsis
  • - Tandem repeats, which are sequences of DNA that occur in multiple copies, are unstable and vary significantly in their copy numbers, yet their regulation mechanisms are not fully understood.
  • - Researchers studied two repetitive DNA areas in yeast—ribosomal DNA (rDNA) and the CUP1 gene array—using advanced assays to explore how factors like DNA replication, transcription, and histone acetylation influence their stability and copy number variations.
  • - The findings indicate that instability at tandem repeats can arise from DNA replication stress and transcription activities, while longer-term changes in copy number involve selective processes; histone acetylation plays a crucial role in managing these responses, suggesting a mechanism for cells to adapt quickly to environmental changes.
View Article and Find Full Text PDF

Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity.

View Article and Find Full Text PDF

The nuclear envelope (NE) contains a specialized set of integral membrane proteins that maintain nuclear shape and integrity and influence chromatin organization and gene expression. Advances in proteomics techniques and studies in model organisms have identified hundreds of proteins that localize to the NE. However, the function of many of these proteins at the NE remains unclear, in part due to a lack of understanding of the interactions that these proteins participate in at the NE membrane.

View Article and Find Full Text PDF

In addition to canonical open reading frames (ORFs), thousands of translated small ORFs (containing less than 100 codons) have been identified in untranslated mRNA regions (UTRs) across eukaryotes. Small ORFs in 5' UTRs (upstream (u)ORFs) often repress translation of the canonical ORF within the same mRNA. However, the function of translated small ORFs in the 3' UTRs (downstream (d)ORFs) is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Aneuploidy refers to having an incorrect number of chromosomes and is linked to conditions like cancer and birth defects.
  • Researchers found that this chromosome imbalance in budding yeast leads to a common gene-expression signature associated with hypo-osmotic stress, indicating cellular distress.
  • The study revealed that aneuploid cells, both in yeast and humans, experience increased membrane stress affecting nutrient uptake, emphasizing a vital link between aneuploidy, nutrient balance, and cellular health.
View Article and Find Full Text PDF

Objective: To identify geographic disparities in access to opioid use disorder (OUD) treatment medications and county demographic and economic characteristics associated with access to buprenorphine and oral naltrexone prescribers in Medicare Part D.

Data Sources/study Setting: We utilized data from the Medicare Part D Prescription Drug Event Standard Analytic File (2010-2015).

Study Design/data Collection: We used logistic regression to examine county-level access to OUD medication prescribers.

View Article and Find Full Text PDF

Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis.

View Article and Find Full Text PDF

Aneuploidy and epigenetic alterations have long been associated with carcinogenesis, but it was unknown whether aneuploidy could disrupt the epigenetic states required for cellular differentiation. In this study, we found that ~3% of random aneuploid karyotypes in yeast disrupt the stable inheritance of silenced chromatin during cell proliferation. Karyotype analysis revealed that this phenotype was significantly correlated with gains of chromosomes III and X.

View Article and Find Full Text PDF

Understanding the protein composition of the inner nuclear membrane (INM) is fundamental to elucidating its role in normal nuclear function and in disease; however, few tools exist to examine the INM in living cells, and the INM-specific proteome remains poorly characterized. Here, we adapted split green fluorescent protein (split-GFP) to systematically localize known and predicted integral membrane proteins in Saccharomyces cerevisiae to the INM as opposed to the outer nuclear membrane. Our data suggest that components of the endoplasmic reticulum (ER) as well as other organelles are able to access the INM, particularly if they contain a small extraluminal domain.

View Article and Find Full Text PDF

Multispectral karyotyping analyzes all chromosomes in a single cell by labeling them with chromosome-specific probes conjugated to unique combinations of fluorophores. Currently available multispectral karyotyping systems require the purchase of specialized equipment and reagents. However, conventional laser scanning confocal microscopes that are capable of separating multiple overlapping emission spectra through spectral imaging and linear unmixing can be utilized for classifying chromosomes painted with multicolor probes.

View Article and Find Full Text PDF

Errors in mitosis are a primary cause of chromosome instability (CIN), generating aneuploid progeny cells. Whereas a variety of factors can influence CIN, under most conditions mitotic errors are rare events that have been difficult to measure accurately. Here we report a green fluorescent protein-based quantitative chromosome transmission fidelity (qCTF) assay in budding yeast that allows sensitive and quantitative detection of CIN and can be easily adapted to high-throughput analysis.

View Article and Find Full Text PDF

Aneuploid genomes, characterized by unbalanced chromosome stoichiometry (karyotype), are associated with cancer malignancy and drug resistance of pathogenic fungi. The phenotypic diversity resulting from karyotypic diversity endows the cell population with superior adaptability. We show here, using a combination of experimental data and a general stochastic model, that the degree of phenotypic variation, thus evolvability, escalates with the degree of overall growth suppression.

View Article and Find Full Text PDF

Recent studies in cancer cells and budding yeast demonstrated that aneuploidy, the state of having abnormal chromosome numbers, correlates with elevated chromosome instability (CIN), i.e. the propensity of gaining and losing chromosomes at a high frequency.

View Article and Find Full Text PDF

Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor.

View Article and Find Full Text PDF

Aneuploidy--the state of having uneven numbers of chromosomes--is a hallmark of cancer and a feature identified in yeast from diverse habitats. Recent studies have shown that aneuploidy is a form of large-effect mutation that is able to confer adaptive phenotypes under diverse stress conditions. Here we investigate whether pleiotropic stress could induce aneuploidy in budding yeast (Saccharomyces cerevisae).

View Article and Find Full Text PDF

Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer and adaptive evolution in experimental organisms. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring about phenotypic variation and improved fitness over that of euploid counterparts. Here we show, using quantitative mass spectrometry-based proteomics and phenotypic profiling, that levels of protein expression in aneuploid yeast strains largely scale with chromosome copy numbers, following the same trend as that observed for the transcriptome, and that aneuploidy confers diverse phenotypes.

View Article and Find Full Text PDF

To identify new molecular targets of rapamycin, an anticancer and immunosuppressive drug, we analyzed temporal changes in yeast over 6 h in response to rapamycin at the transcriptome and proteome levels and integrated the expression patterns with functional profiling. We show that the integration of transcriptomics, proteomics, and functional data sets provides novel insights into the molecular mechanisms of rapamycin action. We first observed a temporal delay in the correlation of mRNA and protein expression where mRNA expression at 1 and 2 h correlated best with protein expression changes after 6 h of rapamycin treatment.

View Article and Find Full Text PDF

Methylation of histone 3 lysine 4 (H3K4) by yeast Set1-COMPASS requires prior monoubiquitination of histone H2B. To define whether other residues within the histones are also required for H3K4 methylation, we systematically generated a complete library of the alanine substitutions of all of the residues of the four core histones in Saccharomyces cerevisiae. From this study we discovered that 18 residues within the four histones are essential for viability on complete growth media.

View Article and Find Full Text PDF

The Elongin BC-box protein family includes the von Hippel-Lindau tumor suppressor and suppressor of cytokine signaling proteins, which are substrate recognition subunits of structurally related classes of E3 ubiquitin ligases composed of Elongin C-Elongin B-Cullin 2-Rbx1 (Cul2 ubiquitin ligases) or of Elongin C-Elongin B-Cullin 5-Rbx2 (Cul5 ubiquitin ligases). The Elongin BC complex acts as an adaptor that links a substrate recognition subunit to heterodimers of either Cullin 2 (Cul2) and RING finger protein Rbx1 or Cullin 5 (Cul5) and Rbx2. It has been shown ( Kamura, T.

View Article and Find Full Text PDF

In order to engage their students in a core methodology of the new genomics era, an ever-increasing number of faculty at primarily undergraduate institutions are gaining access to microarray technology. Their students are conducting successful microarray experiments designed to address a variety of interesting questions. A next step in these teaching and research laboratory projects is often validation of the microarray data for individual selected genes.

View Article and Find Full Text PDF

Bone marrow transplantation (BMT) has been shown to reverse or stabilize some manifestations of mucopolysaccharidosis I (Hurler syndrome). Idiopathic hyperammonemia (IHA) is a rare complication of solid organ and BMT that is characterized by elevated serum ammonia, normal liver enzymes, and abrupt onset of neurologic deterioration. We present the case of a 14-month-old male patient with Hurler syndrome who developed fatal IHA (ammonia = 2297 micromol/L) 31 days after a cord blood transplant.

View Article and Find Full Text PDF