Publications by authors named "William C Stallings"

A new class of potent and selective PDE5 inhibitors is disclosed. Guided by X-ray crystallographic data, optimization of an HTS lead led to the discovery of a series of 2-aryl, (N8)-alkyl substituted-6-aminosubstituted pyrido[3,2b]pyrazinones which show potent inhibition of the PDE5 enzyme. Synthetic details and some structure-activity relationships are also presented.

View Article and Find Full Text PDF

Efforts to improve the potency and physical properties of the aminopyridiopyrazinone class of PDE5 inhibitors through modification of the core ring system are described. Five new ring systems are evaluated and features that impart improved potency and improved solubility are delineated.

View Article and Find Full Text PDF

A series of pyrazole inhibitors of p38 mitogen-activated protein (MAP) kinase were designed using a binding model based on the crystal structure of 1 (SC-102) bound to p38 enzyme. New chemistry using dithietanes was developed to assemble nitrogen-linked substituents at the 5-position of pyrazoles. Calculated log D was used in tandem with structure-based design to guide medicinal chemistry strategy and improve the in vivo activity of a series of molecules.

View Article and Find Full Text PDF

We describe the structure-based design, synthesis, and enzymatic activity of a series of substituted pyrazinones as inhibitors of the TF/VIIa complex. These inhibitors contain substituents meta to the P(1) amidine designed to explore additional interactions with the VIIa residues in the so-called 'S(1) side pocket'. A crystal structure of the designed inhibitors demonstrates the ability of the P(1) side pocket moiety to engage Lys192 and main chain of Gly216 via hydrogen bond interactions, thus, providing additional possibility for chemical modification to improve selectivity and/or physical properties of inhibitors.

View Article and Find Full Text PDF

Targeted 2-pyridones were selected as tissue Factor VIIa inhibitors and prepared from 2,6-dibromopyridine via a multistep synthesis. A variety of chemical transformations, including regioselective nucleophilic addition, selective nitrogen alkylation, and a Suzuki coupling, afforded the targeted tissue Factor VIIa inhibitors. The pyridone core was selected as a replacement for the pyrazinone core of noncovalent tissue Factor VIIa inhibitors and designed such that their substitution pattern would occupy and interact with the S(1), S(2), and S(3) pockets of the tissue Factor VIIa enzyme.

View Article and Find Full Text PDF

Multistep syntheses of substituted benzenes and benzoquinone inhibitors of tissue Factor VIIa are reported. The benzene analogues were designed such that their substitution pattern would occupy and interact with the S(1), S(2), and S(3) pockets of the tissue Factor VIIa (TF/VIIa) enzyme. The compounds exhibited modest potency on TF/VIIa with selectivity over Factor Xa and thrombin.

View Article and Find Full Text PDF

Several multistep syntheses of substituted benzenes are reported. The benzene analogues were designed such that their substitution pattern would occupy and interact with the S(1), S(2), and S(3) pockets of the tissue Factor VIIa enzyme. A variety of chemical transformations including nucleophilic additions, reductive aminations, Stille couplings, and polymer-assisted solution-phase (PASP) techniques were used to prepare key intermediates and final products.

View Article and Find Full Text PDF

Structure-based drug design (SBDD) and polymer-assisted solution-phase (PASP) library synthesis were used to develop a series of pyrazinone inhibitors of the Tissue Factor/Factor VIIa (TF/VIIa) complex. The crystal structure of a tripeptide-alpha-ketothiazole complexed with TF/VIIa was utilized in a docking experiment to identify the pyrazinone core as a starting scaffold. The pyrazinone core could orient the substituents in the correct spatial arrangement to probe the S1, S2, and S3 pockets of the enzyme.

View Article and Find Full Text PDF

A solution-phase synthesis of an alpha-ketothiazole library of the general form D-Phe-L-AA-Arg-alpha-ketothiazole is described. The five-step synthesis is accomplished using a combination of polymeric reagents and polymer-assisted solution-phase purification concepts, including reactant-sequestering resins, reagent-sequestering resins, and tagged reagents. The multistep synthesis affords desired alpha-ketothiazole products in excellent purities and yields.

View Article and Find Full Text PDF

A variety of drugs inhibit the conversion of arachidonic acid to prostaglandin G2 by the cyclooxygenase (COX) activity of prostaglandin endoperoxide synthases. Several modes of inhibitor binding in the COX active site have been described including ion pairing of carboxylic acid containing inhibitors with Arg-120 of COX-1 and COX-2 and insertion of arylsulfonamides and sulfones into the COX-2 side pocket. Recent crystallographic evidence suggests that Tyr-385 and Ser-530 chelate polar or negatively charged groups in arachidonic acid and aspirin.

View Article and Find Full Text PDF

A solution-phase synthesis of an alpha-ketothiazole library of the general form D-Phe-L-AA-L-Arg-alpha-ketothiazole is described. The five-step synthesis is accomplished using a combination of polymeric reagents and polymer-assisted solution-phase purification protocols, including reactant-sequestering resins, reagent-sequestering resins, and tagged reagents. The multi-step synthesis affords the desired alpha-ketothiazole products in excellent purities and yields.

View Article and Find Full Text PDF

Structure-based drug design coupled with polymer-assisted solution-phase library synthesis was utilized to develop a series of pyrazinone inhibitors of the tissue factor/Factor VIIa complex. The crystal structure of a tri-peptide ketothiazole complexed with TF/VIIa was utilized in a docking experiment that identified a benzyl-substituted pyrazinone as a P(2) surrogate for the tri-peptide. A 5-step PASP library synthesis of these aryl-substituted pyrazinones was developed.

View Article and Find Full Text PDF

Patatin is a nonspecific lipid acyl hydrolase that accounts for approximately 40% of the total soluble protein in mature potato tubers, and it has potent insecticidal activity against the corn rootworm. We determined the X-ray crystal structure of a His-tagged variant of an isozyme of patatin, Pat17, to 2.2 A resolution, employing SeMet multiwavelength anomalous dispersion (MAD) phasing methods.

View Article and Find Full Text PDF

MMP-2 is a member of the matrix metalloproteinase family that has been implicated in tumor cell metastasis and angiogenesis. Here, we describe the solution structure of a catalytic domain of MMP-2 complexed with a hydroxamic acid inhibitor (SC-74020), determined by three-dimensional heteronuclear NMR spectroscopy. The catalytic domain, designated MMP-2C, has a short peptide linker replacing the internal fibronectin-domain insertion and is enzymatically active.

View Article and Find Full Text PDF

High-throughput screening (HTS) of compound libraries is used to discover novel leads for drug development. When a structure is available for the target, computer-based screening using molecular docking may also be considered. The two techniques have rarely been used together on the same target.

View Article and Find Full Text PDF