Publications by authors named "William C Parks"

Macrophages are key regulators of tissue repair and fibrosis. Following injury, macrophages undergo marked phenotypic and functional changes to play crucial roles throughout the phases of tissue repair. Idiopathic Pulmonary Fibrosis, which is the most common fibrosing lung disease, has been described as an aberrant reparative response to repetitive alveolar epithelial injury in a genetically susceptible aging individual.

View Article and Find Full Text PDF

A large number of bacterial pathogens bind to host extracellular matrix (ECM) components. For example, many Gram-negative and Gram-positive pathogens express binding proteins for fibronectin (FN) on their cell surface. Mutagenesis studies of bacterial FN-binding proteins have demonstrated their importance in pathogenesis in preclinical animal models.

View Article and Find Full Text PDF

Epithelial plasticity has been suggested in lungs of mice following genetic depletion of stem cells but is of unknown physiological relevance. Viral infection and chronic lung disease share similar pathological features of stem cell loss in alveoli, basal cell (BC) hyperplasia in small airways, and innate immune activation, that contribute to epithelial remodeling and loss of lung function. We show that a subset of distal airway secretory cells, intralobar serous (IS) cells, are activated to assume BC fates following influenza virus infection.

View Article and Find Full Text PDF

Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention.

View Article and Find Full Text PDF

Aging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors.

View Article and Find Full Text PDF

During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P.

View Article and Find Full Text PDF

Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder - a new concept and niche that we designate as the bladder TME (bTME) - during tumour evolution, metastatic progression and in the context of therapeutic response.

View Article and Find Full Text PDF

Type 2 alveolar epithelial cells (AEC2s) function as progenitor cells in the lung. We have shown previously that failure of AEC2 regeneration results in progressive lung fibrosis in mice and is a cardinal feature of idiopathic pulmonary fibrosis (IPF). In this study, we identified deficiency of a specific zinc transporter, SLC39A8 (ZIP8), in AEC2s from both IPF lungs and lungs of old mice.

View Article and Find Full Text PDF

Recent advances in single-cell RNA sequencing (scRNA-seq) and epithelium lineage labeling have yielded identification of multiple abnormal epithelial progenitor populations during alveolar type 2 (ATII) cell differentiation into alveolar type 1 (ATI) cells during regenerative lung post-fibrotic injury. These abnormal cells include basaloid/basal-like cells, ATII transition cells, and persistent epithelial progenitors (PEPs). These cells occurred and accumulated during the regeneration of distal airway and alveoli in response to both chronic and acute pulmonary injury.

View Article and Find Full Text PDF

Pulmonary mesenchymal cells are critical players in both the mouse and human during lung development and disease states. They are increasingly recognized as highly heterogeneous, but there is no consensus on subpopulations or discriminative markers for each subtype. We completed scRNA-seq analysis of mesenchymal cells from the embryonic, postnatal, adult and aged fibrotic lungs of mice and humans.

View Article and Find Full Text PDF

Aberrant lung remodeling in idiopathic pulmonary fibrosis (IPF) is characterized by elevated MMP9 (matrix metalloproteinase 9) expression, but the precise role of this matrix metalloproteinase in this disease has yet to be fully elucidated. To evaluate antifibrotic effects of MMP9 inhibition on IPF. Quantitative genomic, proteomic, and functional analyses both and were used to determine MMP9 expression in IPF cells and the effects of MMP9 inhibition on profibrotic mechanisms.

View Article and Find Full Text PDF

Using an model of tolerance to TLR7-induced skin inflammation, we found a critical role for macrophage-derived MMP10 in mediating immune hypo-responsiveness. Cutaneous exposure to Imiquimod (IMQ), a TLR7 agonist, induced acute expression of pro-inflammatory factors (IL1β, IL6, CXCL1) and neutrophil influx equally in both wildtype and mice. However, whereas subsequent exposure (11 and 12 days later) to IMQ led to marked abrogation of pro-inflammatory factor expression in wildtype mice, mice responded similarly as they did to the first application.

View Article and Find Full Text PDF

Background: Macrophage plasticity allows cells to adopt different phenotypes, a property with important implications in disorders such as cystic fibrosis (CF) and asthma.

Objective: We sought to examine the transcriptional and functional significance of macrophage repolarization from an M1 to an M2 phenotype and assess the role of a common human genetic disorder (CF) and a prototypical allergic disease (asthma) in this transformation.

Methods: Monocyte-derived macrophages were collected from healthy subjects and patients with CF and polarized to an M2 state by using IL-4, IL-10, glucocorticoids, apoptotic PMNs, or azithromycin.

View Article and Find Full Text PDF

Background And Aims: Matrix metalloproteinases (MMPs) have been implicated in atherosclerosis and vascular calcification. Among them, we reported that MMP10 is present in human atheroma, associated with atherosclerosis. However, it remains unclear whether MMP10 is involved in atherogenesis and vascular calcification.

View Article and Find Full Text PDF

Purpose Of Review: Macrophages are central players in the immune response following tissue injury. These cells perform many functions, and the changing tissue microenvironment during injury shapes macrophage phenotype down a variety of polarized pathways. This review summarizes the current knowledge on the roles of macrophages during different stages of tissue injury, repair, and-if repair is not achieved-fibrosis.

View Article and Find Full Text PDF

The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling.

View Article and Find Full Text PDF

Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages.

View Article and Find Full Text PDF

Syndecan-1 is a transmembrane proteoglycan expressed prominently by lung epithelium and has pleiotropic functions such as regulating cell migration, proliferation, and survival. Loss of syndecan-1 expression by lung cancer cells is associated with higher-grade cancers and worse clinical prognosis. We evaluated the effects of syndecan-1 in various cell-based and animal models of lung cancer and found that lung tumorigenesis was moderated by syndecan-1.

View Article and Find Full Text PDF

Growing evidence suggests that versican is important in the innate immune response to lung infection. Our goal was to understand the regulation of macrophage-derived versican and the role it plays in innate immunity. We first defined the signaling events that regulate versican expression, using bone marrow-derived macrophages (BMDMs) from mice lacking specific Toll-like receptors (TLRs), TLR adaptor molecules, or the type I interferon receptor (IFNAR1).

View Article and Find Full Text PDF

We tested the role of Stat5 in dendritic cell and alveolar macrophage (AM) homeostasis in the lung using CD11c-cre mediated deletion (Cre5). We show that Stat5 is required for CD103 dendritic cell and AM development. We found that fetal monocyte maturation into AMs was impaired in Cre5 mice, and we also confirmed impaired AM development of progenitor cells using mixed chimera experiments.

View Article and Find Full Text PDF

As their name implies, matrix metalloproteinases (MMPs) are thought to degrade extracellular matrix proteins, a function that is indeed performed by some members. However, regardless of their cell source, matrix degradation is not the only function of these enzymes. Rather, individual MMPs have been shown to regulate specific immune processes, such as leukocyte influx and migration, antimicrobial activity, macrophage activation, and restoration of barrier function, typically by processing a range of nonmatrix protein substrates.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) comprises chronic bronchitis and emphysema, and is a leading cause of morbidity and mortality. Because tissue destruction is the prominent characteristic of emphysema, extracellular proteinases, particularly those with elastolytic ability, are often considered to be key drivers in this disease. Several human and mouse studies have implicated roles for matrix metalloproteinases (MMPs), particularly macrophage-derived proteinases, in COPD pathogenesis.

View Article and Find Full Text PDF

Multiwalled carbon nanotubes (MWCNTs) are nanomaterials composed of multiple layers of graphene cylinders with unique properties that make them valuable for a number of industries. However, rising global production has led to concerns regarding potential occupational exposures to them as raw materials during handling. This is especially true for long MWCNT fibers, whose aspect ratio has been posited to initiate pathology similar to that of asbestos.

View Article and Find Full Text PDF

Pericytes are perivascular PDGF receptor-β (PDGFRβ) stromal cells required for vasculogenesis and maintenance of microvascular homeostasis in many organs. Because of their unique juxtaposition to microvascular endothelium, lung PDGFRβ cells are well situated to detect proinflammatory molecules released following epithelial injury and promote acute inflammatory responses. Thus we hypothesized that these cells represent an unrecognized immune surveillance or injury-sentinel interstitial cell.

View Article and Find Full Text PDF