Publications by authors named "William C Mobley"

Objectives: Due to increased gene dose for the amyloid precursor protein (APP), elderly adults with Down syndrome (DS) are at a markedly increased risk of Alzheimer's disease (AD), known as DS-AD. How the increased APP gene dose acts and which APP products are responsible for DS-AD is not well understood, thus limiting strategies to target pathogenesis. As one approach to address this question, we used a novel class of γ-secretase modulators that promote γ-site cleavages by the γ-secretase complex, resulting in lower levels of the Aβ42 and Aβ40 peptides.

View Article and Find Full Text PDF

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures.

View Article and Find Full Text PDF

Age remains the central risk factor for many neurodegenerative diseases including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Although the mechanisms of aging are complex, the age-related accumulation of senescent cells in neurodegeneration is well documented and their clearance can alleviate disease-related features in preclinical models. Senescence-like characteristics are observed in both neuronal and glial lineages, but their relative contribution to aging and neurodegeneration remains unclear.

View Article and Find Full Text PDF

Non-familial Alzheimer's disease (AD) occurring before 65 years of age is commonly referred to as early-onset Alzheimer's disease (EOAD) and constitutes ~ 5-6% of all AD cases (Mendez et al. in Continuum 25:34-51, 2019). While EOAD exhibits the same clinicopathological changes such as amyloid plaques, neurofibrillary tangles (NFTs), brain atrophy, and cognitive decline (Sirkis et al.

View Article and Find Full Text PDF

Introduction: People with DS are highly predisposed to Alzheimer's disease (AD) and demonstrate very similar clinical and pathological features. Ts65Dn mice are widely used and serve as the best-characterized animal model of DS.

Methods: We undertook studies to characterize age-related changes for AD-relevant markers linked to Aβ, Tau, and phospho-Tau, axonal structure, inflammation, and behavior.

View Article and Find Full Text PDF

Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion.

View Article and Find Full Text PDF

Objective: The retromer complex plays an essential role in intracellular endosomal sorting. Deficits in the retromer complex are linked to enhanced Aβ production. The levels of the components of the retromer complex are reported to be downregulated in Alzheimer disease (AD).

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices.

View Article and Find Full Text PDF

Introduction: Synaptic failure, a hallmark of Alzheimer's disease (AD), is correlated with reduced levels of synaptic proteins. Though people with Down syndrome (DS) are at markedly increased risk for AD (AD-DS), few studies have addressed synapse dysfunction.

Methods: Synaptic proteins were measured in the frontal cortex of DS, AD-DS, sporadic AD cases, and controls.

View Article and Find Full Text PDF

Compassion in interactions between physicians and patients can have a therapeutic effect independent of the technical medical treatment provided. However, training physicians to effectively communicate compassion is challenging. This study explores how medical students experienced training focused on interacting with patients by examining students' reports of particularly memorable lessons.

View Article and Find Full Text PDF
Article Synopsis
  • * The ACI-24 vaccine, designed to combat Aβ-related neurological disorders, has not been thoroughly tested for safety, tolerability, and immune response in adults with DS.
  • * A clinical trial involving 16 adults with DS evaluated the ACI-24 vaccine and tested its safety, tolerability, and ability to produce immune responses over a 96-week period with 48 weeks of treatment followed by follow-up.
View Article and Find Full Text PDF

Those with Down syndrome (DS)-trisomy for chromosome 21-are routinely impacted by cognitive dysfunction and behavioral challenges in children and adults and Alzheimer's disease in older adults. No proven treatments specifically address these cognitive or behavioral changes. However, advances in the establishment of rodent models and human cell models promise to support development of such treatments.

View Article and Find Full Text PDF
Article Synopsis
  • - Individuals with Down syndrome (DS) are at a higher risk for developing Alzheimer's disease (AD), and the study explores how increased copies of the APP gene play a role in this connection, termed the APP gene dose hypothesis.
  • - The research involved measuring different APP products in various groups, including those with DS, AD-DS, non-demented controls, and sporadic AD cases, revealing significant differences in APP products between these groups.
  • - Findings indicate that AD-DS shows higher levels of certain amyloid beta peptides compared to sporadic AD and highlight the need to further investigate the specific APP products contributing to the unique pathology observed in AD-DS.
View Article and Find Full Text PDF

Down syndrome (DS) is the most common genetic cause of Alzheimer's disease (AD) due to trisomy for all or part of human chromosome 21 (Hsa21). It is also associated with other phenotypes including distinctive facial features, cardiac defects, growth delay, intellectual disability, immune system abnormalities, and hearing loss. All adults with DS demonstrate AD-like brain pathology, including amyloid plaques and neurofibrillary tangles, by age 40 and dementia typically by age 60.

View Article and Find Full Text PDF

Background: Impaired axonal transport may contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD) and Down syndrome (DS). Axonal transport is a complex process in which specific motor proteins move cargoes to and from neuronal cell bodies and their processes. Inconsistent reports point to the changes in AD in the levels of the classical anterograde motor protein kinesin family member 5 (KIF5) and the primary neuronal KIF regulator kinesin light chain 1 (KLC1), raising the possibility that anterograde transport is compromised in AD.

View Article and Find Full Text PDF

A potent γ-secretase modulator (GSM) has been developed to circumvent problems associated with γ-secretase inhibitors (GSIs) and to potentially enable use in primary prevention of early-onset familial Alzheimer's disease (EOFAD). Unlike GSIs, GSMs do not inhibit γ-secretase activity but rather allosterically modulate γ-secretase, reducing the net production of Aβ42 and to a lesser extent Aβ40, while concomitantly augmenting production of Aβ38 and Aβ37. This GSM demonstrated robust time- and dose-dependent efficacy in acute, subchronic, and chronic studies across multiple species, including primary and secondary prevention studies in a transgenic mouse model.

View Article and Find Full Text PDF

A high prevalence of obstructive sleep apnea (OSA) has been reported in Down syndrome (DS) owing to the coexistence of multiple predisposing factors related to its genetic abnormality, posing a challenge for the management of OSA. We hypothesized that DS mice recapitulate craniofacial abnormalities and upper airway obstruction of human DS and can serve as an experimental platform for OSA research. This study, thus, aimed to quantitatively characterize the upper airway as well as craniofacial abnormalities in Dp(16)1Yey (Dp16) mice.

View Article and Find Full Text PDF

The evolution of gamma-secretase modulators (GSMs) through the introduction of novel heterocycles with the goal of aligning activity for reducing the levels of Aβ42 and properties consistent with a drug-like molecule are described. The insertion of a methoxypyridine motif within the tetracyclic scaffold provided compounds with improved activity for arresting Aβ42 production as well as improved properties, including solubility. In vivo pharmacokinetic analysis demonstrated that several compounds within the novel series were capable of crossing the BBB and accessing the therapeutic target.

View Article and Find Full Text PDF

Objective: Recent clinical trials targeting amyloid beta (Aβ) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments.

View Article and Find Full Text PDF

Parkinson's disease is characterized by loss of dopamine neurons in the substantia nigra. Similar to other major neurodegenerative disorders, there are no disease-modifying treatments for Parkinson's disease. While most treatment strategies aim to prevent neuronal loss or protect vulnerable neuronal circuits, a potential alternative is to replace lost neurons to reconstruct disrupted circuits.

View Article and Find Full Text PDF

Nerve growth factor (NGF) regulates many aspects of neuronal biology by retrogradely propagating signals along axons to the targets of those axons. How this occurs when axons contain a plethora of proteins that can silence those signals has long perplexed the neurotrophin field. In this issue of the JCI, Li et al.

View Article and Find Full Text PDF

Individualizing patient treatment is a core objective of the medical field. Reaching this objective has been elusive owing to the complex set of factors contributing to both disease and health; many factors, from genes to proteins, remain unknown in their role in human physiology. Accurately diagnosing, monitoring, and treating disorders requires advances in biomarker discovery, the subsequent development of accurate signatures that correspond with dynamic disease states, as well as therapeutic interventions that can be continuously optimized and modulated for dose and drug selection.

View Article and Find Full Text PDF