Acidic proteins are critical to biomineral formation, although their precise mechanistic function remains poorly understood. A number of recent studies have suggested a nonclassical mineralization model that emphasizes the importance of the formation of polymer-stabilized mineral clusters or particles; however, it has been difficult to characterize the precursors experimentally due to their transient nature. Here, we successfully captured stepwise evolution of transient CaP clusters in mineralizing solutions and studied the roles of functional polymers with laser light scattering (LLS) to determine how these polymers influence the stability of nanoclusters.
View Article and Find Full Text PDFWe have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun.
View Article and Find Full Text PDFIron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles.
View Article and Find Full Text PDFAlthough "chaperone molecules" rich in negatively charged residues (i.e., glutamic and aspartic acid) are known to play important roles in the biomineralization process, the precise mechanism by which type I collagen acquires intrafibrillar mineral via these chaperone molecules remains unknown.
View Article and Find Full Text PDFThe colloidal stability of polymer-stabilized nanoparticles is critical for therapeutic use. However, phosphates in physiological media can induce polymer desorption and consequently flocculation. Colloidal characteristics of PEO-magnetite nanoparticles with different anchors for attaching PEO to magnetite were examined in PBS.
View Article and Find Full Text PDFBiocompatible magnetic nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of magnetite nanoparticles coated with poly(ethylene oxide) (PEO) homopolymers and amphiphilic poly(propylene oxide-b-ethylene oxide) (PPO-b-PEO) copolymers that were anchored through ammonium ions. Predictions and experimental measurements of the colloidal properties of these nanoparticles in water and phosphate-buffered saline (PBS) as functions of the polymer block lengths and polymer loading are reported.
View Article and Find Full Text PDFNanotechnology has made significant advances in the reduction of free radical damage in the field of materials science. Cross-disciplinary interactions and the application of this technology to biological systems has led to the elucidation of novel nanoparticle antioxidants, which are the subject of this review. Recent reports suggest that cerium oxide and other nanoparticles are potent, and probably regenerative, free radical scavengers in vitro and in vivo.
View Article and Find Full Text PDF