Publications by authors named "William C Dewey"

Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.

View Article and Find Full Text PDF

This commentary addresses the matter of misinterpretation of thermal dose as discussed by Herman and Harris (2002), and shows that the thermal doses they would consider as ineffective (i.e., "safe") for producing a hyperthermia-induced teratologic effect, can be highly effective ones.

View Article and Find Full Text PDF

This study was designed to examine the viability and proliferation of uninucleated and multinucleated giant cells formed after 6 Gy X irradiation. The pedigrees of 102 individual EJ30 giant cells present 5 days after irradiation were analyzed from time-lapse movies captured over 6.3 days from 100 fields (100x).

View Article and Find Full Text PDF

The purpose of this study was to quantify the modes and kinetics of cell death for EJ30 human bladder carcinoma cells irradiated in different phases of the cell cycle. Asynchronous human bladder carcinoma cells were observed in multiple fields by computerized video time-lapse (CVTL) microscopy for one to two cell divisions before irradiation (6 Gy) and for 6-11 days afterward. By analyzing time-lapse movies collected from these fields, pedigrees were constructed showing the behaviors of 231 cells irradiated in different phases of the cell cycle (i.

View Article and Find Full Text PDF

Around 30 years ago, a very prominent molecular biologist confidently proclaimed that nothing of fundamental importance has ever been learned by irradiating cells! The poor man obviously did not know about discoveries such as DNA repair, mutagenesis, connections between mutagenesis and carcinogenesis, genomic instability, transposable genetic elements, cell cycle checkpoints, or lines of evidence historically linking the genetic material with nucleic acids, or origins of the subject of oxidative stress in organisms, to name a few things of fundamental importance learned by irradiating cells that were well known even at that time. Early radiation studies were, quite naturally, phenomenological. They led to the realization that radiations could cause pronounced biological effects.

View Article and Find Full Text PDF