Publications by authors named "William Burlingham"

Two key problems of allo-tolerance during fetal-maternal co-existence are: 1) it's focus must be local, allowing the mother's continued peripheral immune competence to resist pathogens ubiquitously, and 2) it must propagate itself, i.e. continuously recruit new re-enforcements of the local tolerant state.

View Article and Find Full Text PDF

Development of a post-transplant kidney transplant tolerance induction protocol involving a novel total lymphoid irradiation (TLI) conditioning method in a rhesus macaque model is described. We examined the feasibility of acheiving tolerance to MHC 1-haplotype matched kidney transplants by establishing a mixed chimeric state with infusion of donor hematopoietic cells (HC) using TomoTherapy TLI. The chimeric state was hypothesized to permit the elimination of all immunosuppressive (IS) medications while preserving allograft function long-term without development of graft-versus-host-disease (GVHD) or rejection.

View Article and Find Full Text PDF

Unlabelled: Here we test the hypothesis that, like CD81-associated "latent" IL35, the transforming growth factor (TGF)β:latency-associated peptide (LAP)/glycoprotein A repetitions predominant (GARP) complex was also tethered to small extracellular vesicles (sEVs), aka exosomes, produced by lymphocytes from allo-tolerized mice. Once these sEVs are taken up by conventional T cells, we also test whether TGFβ could be activated suppressing the local immune response.

Methods: C57BL/6 mice were tolerized by i.

View Article and Find Full Text PDF

Exposure to non-inherited maternal antigens (NIMA) during the fetal period induces lifelong split tolerance to grafts expressing these allo-antigens. In adult mice, the production of extracellular vesicles (EVs) from maternal microchimeric cells causes cross-decoration (XD) of offspring dendritic cells (DC) with NIMA and upregulation of PD-L1, contributing to NIMA tolerance. To see how this may apply to humans, we tested NIMA acquisition by fetal DCS in human cord blood.

View Article and Find Full Text PDF

Background: Complement activation in kidney transplantation is implicated in the pathogenesis of delayed graft function (DGF). This study evaluated the therapeutic efficacy of high-dose recombinant human C1 esterase inhibitor (rhC1INH) to prevent DGF in a nonhuman primate model of kidney transplantation after brain death and prolonged cold ischemia.

Methods: Brain death donors underwent 20 h of conventional management.

View Article and Find Full Text PDF

Development of a new methodology to induce immunological chimerism after allogeneic hematopoietic cell (HC) transplantation in a rhesus macaque model is described. The chimeric state was achieved using a non-myeloablative, helical tomotherapy-based total lymphoid irradiation (TomoTLI) conditioning regimen followed by donor HC infusions between 1-haplotype matched donor/recipient pairs. The technique was tested as a feasibility study in an experimental group of seven rhesus macaques that received the novel TomoTLI tolerance protocol and HC allo-transplants.

View Article and Find Full Text PDF

Normothermic ex vivo liver perfusion (NEVLP) is a novel system for organ preservation that may improve over static cold storage clinically and offers the chance for graft modification prior to transplantation. Although recent studies have shown the presence of inflammatory molecules during perfusion, none have yet shown the effects of NEVLP on liver-resident immune cell activation. We investigated the effects of NEVLP on liver-resident immune cell activation and assessed the ability of anti-inflammatory cytokines interleukin 10 (IL10) and transforming growth factor β (TGF-β) to improve organ function and reduce immune activation during perfusion.

View Article and Find Full Text PDF

Unlabelled: Individuals harbor preexisting HLA-DR/DQ-restricted responses to collagen type V (ColV) mediated by Th17 cells under Treg control, both specific to peptides that bind to inherited HLA class II antigens. Yet after transplant, the donor-DR type somehow influences graft outcome. We hypothesized that, long after a lung or heart allograft, the particular HLA-DR type of the mismatched transplant donor transforms the specificity of the "anti-self" response.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic hypoxia leads to pulmonary hypertension primarily due to inflammation caused by T helper-17 (T17) cells, although the exact antigens involved remain unidentified.
  • The study reveals that smooth muscle NFATc3 increases the expression of collagen type V (col V), which is usually hidden from the immune system, triggering an autoimmune response from naturally occurring T17 cells in response to hypoxia.
  • Experiments with smooth muscle cell-specific knockout mice showed that the absence of NFATc3 prevents the development of pulmonary hypertension, indicating its crucial role in the immune response and inflammation linked to chronic hypoxia.
View Article and Find Full Text PDF

Originally identified as lymphocyte regulation of fellow lymphocytes, our understanding of infectious tolerance has undergone significant evolutions in understanding since being proposed in the early 1970s by Gershon and Kondo and expanded upon by Herman Waldman two decades later. The evolution of our understanding of infectious tolerance has coincided with significant cellular and humoral discoveries. The early studies leading to the isolation and identification of Regulatory T cells (Tregs) and cytokines including TGFβ and IL-10 in the control of peripheral tolerance was a paradigm shift in our understanding of infectious tolerance.

View Article and Find Full Text PDF

Objectives: Emerging evidence has shown a role for tumor antigen-specific regulation in cancer. Identifying individuals with pre-existing regulatory responses may be key to understand those who are more likely to respond to Programmed Death-1 (PD-1) or PD-1 Ligand 1 (PD-L1) checkpoint blockade. We hypothesized that a functional assay could identify the role of PD-1/PD-L1 interactions on tumor-specific immune cells in the peripheral blood in patients with advanced non-small-cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Background: Use of cell-based medicinal products (CBMPs) represents a state-of-the-art approach for reducing general immunosuppression in organ transplantation. We tested multiple regulatory CBMPs in kidney transplant trials to establish the safety of regulatory CBMPs when combined with reduced immunosuppressive treatment.

Methods: The ONE Study consisted of seven investigator-led, single-arm trials done internationally at eight hospitals in France, Germany, Italy, the UK, and the USA (60 week follow-up).

View Article and Find Full Text PDF

Unlabelled: The ideal minimizing strategy for maintenance immunosuppression in HLA-matched kidney transplant recipients (KTR) is unknown. We hypothesized that mycophenolate (MPA) monotherapy is a safe and effective approach for maintenance therapy in this group of KTR.

Methods: Data were abstracted for 6-antigen HLA-matched KTR between 1994 and 2013.

View Article and Find Full Text PDF

Background: Extracellular ATP binds to purinergic receptors and promotes inflammatory responses. We tested whether oxidized ATP (oATP), P2X7 receptor antagonist can attenuate acute kidney allograft rejection.

Methods: Brown Norway kidney allografts were transplanted into Lewis recipients.

View Article and Find Full Text PDF

Interleukin-35 (IL-35) is an immunosuppressive cytokine composed of Epstein-Barr-virus-induced protein 3 (Ebi3) and IL-12α chain (p35) subunits, yet the forms that IL-35 assume and its role in peripheral tolerance remain elusive. We induce CBA-specific, IL-35-producing T regulatory (Treg) cells in Treg C57BL/6 reporter mice and identify IL-35 producers by expression of Ebi3 gene reporter plus Ebi3 and p35 proteins. Curiously, both subunits of IL-35 are displayed on the surface of tolerogen-specific Foxp3 and Foxp3 (iTr35) T cells.

View Article and Find Full Text PDF

Delayed graft function (DGF) in renal transplant is associated with reduced graft survival and increased immunogenicity. The complement-driven inflammatory response after brain death (BD) and posttransplant reperfusion injury play significant roles in the pathogenesis of DGF. In a nonhuman primate model, we tested complement-blockade in BD donors to prevent DGF and improve graft survival.

View Article and Find Full Text PDF

Exosomes are a potent means for intercellular communication. However, exosomes have received intensive research focus in immunobiology only relatively recently. Because they transport proteins, lipids and genetic material between cells, they are especially suited to amplify their parental cell's message and overcome the physical constraints of cell-to-cell contact, that is exosome release gives cells the ability to alter distant, non-contiguous cells.

View Article and Find Full Text PDF

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs.

View Article and Find Full Text PDF

Contractile to synthetic phenotypic switching of smooth muscle cells (SMCs) contributes to stenosis in vascular disease and vascular transplants. To generate more contractile SMCs, we performed a high-throughput differentiation screen using a MYH11-NLuc-tdTomato human embryonic stem cell reporter cell line. We identified RepSox as a factor that promotes differentiation of MYH11-positive cells by promoting NOTCH signaling.

View Article and Find Full Text PDF

Aims/hypothesis: Patients with autoimmune type 1 diabetes transplanted with pancreatic islets to their liver experience significant improvement in quality of life through better control of blood sugar and enhanced awareness of hypoglycaemia. However, long-term survival and efficacy of the intrahepatic islet transplant are limited owing to liver-specific complications, such as immediate blood-mediated immune reaction, hypoxia, a highly enzymatic and inflammatory environment and locally elevated levels of drugs including immunosuppressive agents, all of which are injurious to islets. This has spurred a search for new islet transplant sites and for innovative ways to achieve long-term graft survival and efficacy without life-long systemic immunosuppression and its complications.

View Article and Find Full Text PDF
Article Synopsis
  • The extracellular matrix (ECM) is crucial for developmental processes, influencing cell behavior through its structure and biochemical signals.
  • Decellularization of animal pancreata has been studied, but traditional methods are less successful on human pancreata due to their higher lipid content.
  • This study introduces a new decellularization technique that effectively removes lipids and produces a 3D biological scaffold and hydrogel from human pancreas, which is compatible with cell culture and has potential applications in transplantation.
View Article and Find Full Text PDF

Leukocyte-associated Ig-like receptor 1 (LAIR1) is an ITIM-bearing collagen receptor expressed by leukocytes and is implicated in immune suppression. However, using a divalent soluble LAIR1/Fc recombinant protein to block interaction of cell surface LAIR1 with matrix collagen, we found that whereas T1 responses were enhanced as predicted, T17 responses were strongly inhibited. Indeed, LAIR1 on both T cells and monocytes was required for optimal T17 responses to collagen type (Col)V.

View Article and Find Full Text PDF

Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs). Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules.

View Article and Find Full Text PDF