Acta Biomater
January 2024
In view of inevitable recurrences despite resection, glioblastoma (GB) is still an unmet clinical need. Dealing with the stromal-cell derived factor 1-alpha (SDF-1α)/CXCR4 axis as a hallmark of infiltrative GB tumors and with the resection cavity situation, the present study described the effects and relevance of a new engineered micro-nanostructured SF-HA-Hep aerogel sponges, made of silk fibroin (SF), hyaluronic acid (HA) and heparin (Hep) and loaded with SDF-1α, to interfere with the GB ecosystem and residual GB cells, attracting and confining them in a controlled area before elimination. 70 µm-pore sponges were designed as an implantable scaffold to trap GB cells.
View Article and Find Full Text PDFNanotechnology application in cancer treatment is promising and is likely to quickly spread worldwide in the near future. To date, most scientific studies on nanomaterial development have focused on deepening the attitudes of end users and experts, leaving clinical practice implications unexplored. Neuro-oncology might be a promising field for the application of nanotechnologies, especially for malignant brain tumors with a low-survival rate such as glioblastoma (GBM).
View Article and Find Full Text PDF